Localization for the one-dimensional Anderson model via positivity and large deviations for the Lyapunov exponent

We provide a complete and self-contained proof of spectral and dynamical localization for the one-dimensional Anderson model, starting from the positivity of the Lyapunov exponent provided by Fürstenberg's theorem. That is, a Schrödinger operator in \ell ^2(\mathbb{Z}) whose potential is given...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2019-09, Vol.372 (5), p.3619-3667
Hauptverfasser: Bucaj, Valmir, Damanik, David, Fillman, Jake, Gerbuz, Vitaly, VandenBoom, Tom, Wang, Fengpeng, Zhang, Zhenghe
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide a complete and self-contained proof of spectral and dynamical localization for the one-dimensional Anderson model, starting from the positivity of the Lyapunov exponent provided by Fürstenberg's theorem. That is, a Schrödinger operator in \ell ^2(\mathbb{Z}) whose potential is given by independent, identically distributed (i.i.d.) random variables almost surely has pure point spectrum with exponentially decaying eigenfunctions, and its unitary group exhibits exponential off-diagonal decay, uniformly in time. We also explain how to obtain analogous statements for extended CMV matrices whose Verblunsky coefficients are i.i.d., as well as for half-line analogues of these models.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/7832