Generalized Toda flows

The classical hierarchy of Toda flows can be thought of as an action of the (abelian) group of polynomials on Jacobi matrices. We present a generalization of this to the larger groups of C^2 and entire functions, and in this second case, we also introduce associated cocycles and in fact give center...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2019-04, Vol.371 (7), p.5069-5081
Hauptverfasser: Ong, Darren, Remling, Christian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5081
container_issue 7
container_start_page 5069
container_title Transactions of the American Mathematical Society
container_volume 371
creator Ong, Darren
Remling, Christian
description The classical hierarchy of Toda flows can be thought of as an action of the (abelian) group of polynomials on Jacobi matrices. We present a generalization of this to the larger groups of C^2 and entire functions, and in this second case, we also introduce associated cocycles and in fact give center stage to this object.
doi_str_mv 10.1090/tran/7695
format Article
fullrecord <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_7695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_7695</sourcerecordid><originalsourceid>FETCH-LOGICAL-a293t-d6e447d073170962e103c6287c3a089582a173ed488eaca4030d2dc8484ce3c23</originalsourceid><addsrcrecordid>eNp9j79LQzEURoMo-KwOLs4dXBxib3685GaUolUodGnncEnug8prnyQF0b_ePurc6eODw4EjxL2CZwUBZodC-5l3ob0QjQJE6bCFS9EAgJYhWH8tbmr9PF6w6BrxsOA9F-q3v5yn6yHTtOuH73orrjrqK9_970Rs3l7X83e5XC0-5i9LSTqYg8yOrfUZvFEegtOswCSn0SdDgKFFTcobzhaRKZEFA1nnhBZtYpO0mYinkzeVodbCXfwq2x2Vn6ggjkFxDIpj0JF9PLG0q2ewPyBTSAo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generalized Toda flows</title><source>American Mathematical Society Publications</source><creator>Ong, Darren ; Remling, Christian</creator><creatorcontrib>Ong, Darren ; Remling, Christian</creatorcontrib><description>The classical hierarchy of Toda flows can be thought of as an action of the (abelian) group of polynomials on Jacobi matrices. We present a generalization of this to the larger groups of C^2 and entire functions, and in this second case, we also introduce associated cocycles and in fact give center stage to this object.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/7695</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society, 2019-04, Vol.371 (7), p.5069-5081</ispartof><rights>Copyright 2018, American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a293t-d6e447d073170962e103c6287c3a089582a173ed488eaca4030d2dc8484ce3c23</citedby><cites>FETCH-LOGICAL-a293t-d6e447d073170962e103c6287c3a089582a173ed488eaca4030d2dc8484ce3c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/tran/2019-371-07/S0002-9947-2018-07695-4/S0002-9947-2018-07695-4.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/tran/2019-371-07/S0002-9947-2018-07695-4/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23328,27924,27925,77836,77846</link.rule.ids></links><search><creatorcontrib>Ong, Darren</creatorcontrib><creatorcontrib>Remling, Christian</creatorcontrib><title>Generalized Toda flows</title><title>Transactions of the American Mathematical Society</title><description>The classical hierarchy of Toda flows can be thought of as an action of the (abelian) group of polynomials on Jacobi matrices. We present a generalization of this to the larger groups of C^2 and entire functions, and in this second case, we also introduce associated cocycles and in fact give center stage to this object.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9j79LQzEURoMo-KwOLs4dXBxib3685GaUolUodGnncEnug8prnyQF0b_ePurc6eODw4EjxL2CZwUBZodC-5l3ob0QjQJE6bCFS9EAgJYhWH8tbmr9PF6w6BrxsOA9F-q3v5yn6yHTtOuH73orrjrqK9_970Rs3l7X83e5XC0-5i9LSTqYg8yOrfUZvFEegtOswCSn0SdDgKFFTcobzhaRKZEFA1nnhBZtYpO0mYinkzeVodbCXfwq2x2Vn6ggjkFxDIpj0JF9PLG0q2ewPyBTSAo</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Ong, Darren</creator><creator>Remling, Christian</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190401</creationdate><title>Generalized Toda flows</title><author>Ong, Darren ; Remling, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a293t-d6e447d073170962e103c6287c3a089582a173ed488eaca4030d2dc8484ce3c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ong, Darren</creatorcontrib><creatorcontrib>Remling, Christian</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ong, Darren</au><au>Remling, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Toda flows</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2019-04-01</date><risdate>2019</risdate><volume>371</volume><issue>7</issue><spage>5069</spage><epage>5081</epage><pages>5069-5081</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>The classical hierarchy of Toda flows can be thought of as an action of the (abelian) group of polynomials on Jacobi matrices. We present a generalization of this to the larger groups of C^2 and entire functions, and in this second case, we also introduce associated cocycles and in fact give center stage to this object.</abstract><doi>10.1090/tran/7695</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2019-04, Vol.371 (7), p.5069-5081
issn 0002-9947
1088-6850
language eng
recordid cdi_crossref_primary_10_1090_tran_7695
source American Mathematical Society Publications
title Generalized Toda flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A18%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Toda%20flows&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Ong,%20Darren&rft.date=2019-04-01&rft.volume=371&rft.issue=7&rft.spage=5069&rft.epage=5081&rft.pages=5069-5081&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/7695&rft_dat=%3Cams_cross%3E10_1090_tran_7695%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true