Generalized Toda flows
The classical hierarchy of Toda flows can be thought of as an action of the (abelian) group of polynomials on Jacobi matrices. We present a generalization of this to the larger groups of C^2 and entire functions, and in this second case, we also introduce associated cocycles and in fact give center...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2019-04, Vol.371 (7), p.5069-5081 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5081 |
---|---|
container_issue | 7 |
container_start_page | 5069 |
container_title | Transactions of the American Mathematical Society |
container_volume | 371 |
creator | Ong, Darren Remling, Christian |
description | The classical hierarchy of Toda flows can be thought of as an action of the (abelian) group of polynomials on Jacobi matrices. We present a generalization of this to the larger groups of C^2 and entire functions, and in this second case, we also introduce associated cocycles and in fact give center stage to this object. |
doi_str_mv | 10.1090/tran/7695 |
format | Article |
fullrecord | <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_7695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_7695</sourcerecordid><originalsourceid>FETCH-LOGICAL-a293t-d6e447d073170962e103c6287c3a089582a173ed488eaca4030d2dc8484ce3c23</originalsourceid><addsrcrecordid>eNp9j79LQzEURoMo-KwOLs4dXBxib3685GaUolUodGnncEnug8prnyQF0b_ePurc6eODw4EjxL2CZwUBZodC-5l3ob0QjQJE6bCFS9EAgJYhWH8tbmr9PF6w6BrxsOA9F-q3v5yn6yHTtOuH73orrjrqK9_970Rs3l7X83e5XC0-5i9LSTqYg8yOrfUZvFEegtOswCSn0SdDgKFFTcobzhaRKZEFA1nnhBZtYpO0mYinkzeVodbCXfwq2x2Vn6ggjkFxDIpj0JF9PLG0q2ewPyBTSAo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generalized Toda flows</title><source>American Mathematical Society Publications</source><creator>Ong, Darren ; Remling, Christian</creator><creatorcontrib>Ong, Darren ; Remling, Christian</creatorcontrib><description>The classical hierarchy of Toda flows can be thought of as an action of the (abelian) group of polynomials on Jacobi matrices. We present a generalization of this to the larger groups of C^2 and entire functions, and in this second case, we also introduce associated cocycles and in fact give center stage to this object.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/7695</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society, 2019-04, Vol.371 (7), p.5069-5081</ispartof><rights>Copyright 2018, American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a293t-d6e447d073170962e103c6287c3a089582a173ed488eaca4030d2dc8484ce3c23</citedby><cites>FETCH-LOGICAL-a293t-d6e447d073170962e103c6287c3a089582a173ed488eaca4030d2dc8484ce3c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/tran/2019-371-07/S0002-9947-2018-07695-4/S0002-9947-2018-07695-4.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/tran/2019-371-07/S0002-9947-2018-07695-4/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23328,27924,27925,77836,77846</link.rule.ids></links><search><creatorcontrib>Ong, Darren</creatorcontrib><creatorcontrib>Remling, Christian</creatorcontrib><title>Generalized Toda flows</title><title>Transactions of the American Mathematical Society</title><description>The classical hierarchy of Toda flows can be thought of as an action of the (abelian) group of polynomials on Jacobi matrices. We present a generalization of this to the larger groups of C^2 and entire functions, and in this second case, we also introduce associated cocycles and in fact give center stage to this object.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9j79LQzEURoMo-KwOLs4dXBxib3685GaUolUodGnncEnug8prnyQF0b_ePurc6eODw4EjxL2CZwUBZodC-5l3ob0QjQJE6bCFS9EAgJYhWH8tbmr9PF6w6BrxsOA9F-q3v5yn6yHTtOuH73orrjrqK9_970Rs3l7X83e5XC0-5i9LSTqYg8yOrfUZvFEegtOswCSn0SdDgKFFTcobzhaRKZEFA1nnhBZtYpO0mYinkzeVodbCXfwq2x2Vn6ggjkFxDIpj0JF9PLG0q2ewPyBTSAo</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Ong, Darren</creator><creator>Remling, Christian</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190401</creationdate><title>Generalized Toda flows</title><author>Ong, Darren ; Remling, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a293t-d6e447d073170962e103c6287c3a089582a173ed488eaca4030d2dc8484ce3c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ong, Darren</creatorcontrib><creatorcontrib>Remling, Christian</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ong, Darren</au><au>Remling, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Toda flows</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2019-04-01</date><risdate>2019</risdate><volume>371</volume><issue>7</issue><spage>5069</spage><epage>5081</epage><pages>5069-5081</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>The classical hierarchy of Toda flows can be thought of as an action of the (abelian) group of polynomials on Jacobi matrices. We present a generalization of this to the larger groups of C^2 and entire functions, and in this second case, we also introduce associated cocycles and in fact give center stage to this object.</abstract><doi>10.1090/tran/7695</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9947 |
ispartof | Transactions of the American Mathematical Society, 2019-04, Vol.371 (7), p.5069-5081 |
issn | 0002-9947 1088-6850 |
language | eng |
recordid | cdi_crossref_primary_10_1090_tran_7695 |
source | American Mathematical Society Publications |
title | Generalized Toda flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A18%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Toda%20flows&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Ong,%20Darren&rft.date=2019-04-01&rft.volume=371&rft.issue=7&rft.spage=5069&rft.epage=5081&rft.pages=5069-5081&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/7695&rft_dat=%3Cams_cross%3E10_1090_tran_7695%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |