Eremenko points and the structure of the escaping set

Much recent work on the iterates of a transcendental entire function f has been motivated by Eremenko's conjecture that all the components of the escaping set I(f) are unbounded. We prove several general results about the topological structure of I(f) including the fact that if I(f) is disconne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2019-09, Vol.372 (5), p.3083-3111
Hauptverfasser: RIPPON, P. J., STALLARD, G. M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3111
container_issue 5
container_start_page 3083
container_title Transactions of the American Mathematical Society
container_volume 372
creator RIPPON, P. J.
STALLARD, G. M.
description Much recent work on the iterates of a transcendental entire function f has been motivated by Eremenko's conjecture that all the components of the escaping set I(f) are unbounded. We prove several general results about the topological structure of I(f) including the fact that if I(f) is disconnected, then it contains uncountably many pairwise disjoint unbounded continua, all of which are subsets of the fast escaping set. We give analogous results for the intersection of I(f) with the Julia set when multiply connected wandering domains are not present, and show that completely different results hold when such wandering domains are present. In proving these, we obtain the unexpected result that some types of multiply connected wandering domains have complementary components with no interior, indeed uncountably many.
doi_str_mv 10.1090/tran/7673
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_7673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26762516</jstor_id><sourcerecordid>26762516</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-b94e26e577588b43a73ac3f3db95f0b00b2653887729d1e67e7b23b00df087243</originalsourceid><addsrcrecordid>eNp9j0tLxDAUhYMoWEcX_gChCzcu6twkzWspw_iAATe6Lkl7ox3tgySz8N_bWnHp6nLP-TjwEXJJ4ZaCgXUKtl8rqfgRyShoXUgt4JhkAMAKY0p1Ss5i3E8vlFpmRGwDdth_DPk4tH2Kue2bPL1jHlM41OkQMB_8T4CxtmPbv-UR0zk58fYz4sXvXZHX--3L5rHYPT88be52heVUpMKZEplEoZTQ2pXcKm5r7nnjjPDgAByTgmutFDMNRalQOcanvPGgFSv5itwsu3UYYgzoqzG0nQ1fFYVq9q1m32r2ndirhd3HNIQ_kEklmaBy6q-X3nbxn5lv21BdOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Eremenko points and the structure of the escaping set</title><source>American Mathematical Society Publications</source><creator>RIPPON, P. J. ; STALLARD, G. M.</creator><creatorcontrib>RIPPON, P. J. ; STALLARD, G. M.</creatorcontrib><description>Much recent work on the iterates of a transcendental entire function f has been motivated by Eremenko's conjecture that all the components of the escaping set I(f) are unbounded. We prove several general results about the topological structure of I(f) including the fact that if I(f) is disconnected, then it contains uncountably many pairwise disjoint unbounded continua, all of which are subsets of the fast escaping set. We give analogous results for the intersection of I(f) with the Julia set when multiply connected wandering domains are not present, and show that completely different results hold when such wandering domains are present. In proving these, we obtain the unexpected result that some types of multiply connected wandering domains have complementary components with no interior, indeed uncountably many.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/7673</identifier><language>eng</language><publisher>American Mathematical Society</publisher><ispartof>Transactions of the American Mathematical Society, 2019-09, Vol.372 (5), p.3083-3111</ispartof><rights>Copyright 2019, American Mathematical Society</rights><rights>2019 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-b94e26e577588b43a73ac3f3db95f0b00b2653887729d1e67e7b23b00df087243</citedby><cites>FETCH-LOGICAL-a315t-b94e26e577588b43a73ac3f3db95f0b00b2653887729d1e67e7b23b00df087243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/tran/2019-372-05/S0002-9947-2019-07673-0/S0002-9947-2019-07673-0.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/tran/2019-372-05/S0002-9947-2019-07673-0/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,777,781,23309,27905,27906,77585,77595</link.rule.ids></links><search><creatorcontrib>RIPPON, P. J.</creatorcontrib><creatorcontrib>STALLARD, G. M.</creatorcontrib><title>Eremenko points and the structure of the escaping set</title><title>Transactions of the American Mathematical Society</title><description>Much recent work on the iterates of a transcendental entire function f has been motivated by Eremenko's conjecture that all the components of the escaping set I(f) are unbounded. We prove several general results about the topological structure of I(f) including the fact that if I(f) is disconnected, then it contains uncountably many pairwise disjoint unbounded continua, all of which are subsets of the fast escaping set. We give analogous results for the intersection of I(f) with the Julia set when multiply connected wandering domains are not present, and show that completely different results hold when such wandering domains are present. In proving these, we obtain the unexpected result that some types of multiply connected wandering domains have complementary components with no interior, indeed uncountably many.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9j0tLxDAUhYMoWEcX_gChCzcu6twkzWspw_iAATe6Lkl7ox3tgySz8N_bWnHp6nLP-TjwEXJJ4ZaCgXUKtl8rqfgRyShoXUgt4JhkAMAKY0p1Ss5i3E8vlFpmRGwDdth_DPk4tH2Kue2bPL1jHlM41OkQMB_8T4CxtmPbv-UR0zk58fYz4sXvXZHX--3L5rHYPT88be52heVUpMKZEplEoZTQ2pXcKm5r7nnjjPDgAByTgmutFDMNRalQOcanvPGgFSv5itwsu3UYYgzoqzG0nQ1fFYVq9q1m32r2ndirhd3HNIQ_kEklmaBy6q-X3nbxn5lv21BdOQ</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>RIPPON, P. J.</creator><creator>STALLARD, G. M.</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190901</creationdate><title>Eremenko points and the structure of the escaping set</title><author>RIPPON, P. J. ; STALLARD, G. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-b94e26e577588b43a73ac3f3db95f0b00b2653887729d1e67e7b23b00df087243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>RIPPON, P. J.</creatorcontrib><creatorcontrib>STALLARD, G. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>RIPPON, P. J.</au><au>STALLARD, G. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eremenko points and the structure of the escaping set</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>372</volume><issue>5</issue><spage>3083</spage><epage>3111</epage><pages>3083-3111</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>Much recent work on the iterates of a transcendental entire function f has been motivated by Eremenko's conjecture that all the components of the escaping set I(f) are unbounded. We prove several general results about the topological structure of I(f) including the fact that if I(f) is disconnected, then it contains uncountably many pairwise disjoint unbounded continua, all of which are subsets of the fast escaping set. We give analogous results for the intersection of I(f) with the Julia set when multiply connected wandering domains are not present, and show that completely different results hold when such wandering domains are present. In proving these, we obtain the unexpected result that some types of multiply connected wandering domains have complementary components with no interior, indeed uncountably many.</abstract><pub>American Mathematical Society</pub><doi>10.1090/tran/7673</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2019-09, Vol.372 (5), p.3083-3111
issn 0002-9947
1088-6850
language eng
recordid cdi_crossref_primary_10_1090_tran_7673
source American Mathematical Society Publications
title Eremenko points and the structure of the escaping set
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A04%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eremenko%20points%20and%20the%20structure%20of%20the%20escaping%20set&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=RIPPON,%20P.%20J.&rft.date=2019-09-01&rft.volume=372&rft.issue=5&rft.spage=3083&rft.epage=3111&rft.pages=3083-3111&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/7673&rft_dat=%3Cjstor_cross%3E26762516%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26762516&rfr_iscdi=true