Quantitative height bounds under splitting conditions

In an earlier work, the first author and Petsche used potential theoretic techniques to establish a lower bound for the height of algebraic numbers that satisfy splitting conditions such as being totally real or p-adic, improving on earlier work of Bombieri and Zannier in the totally p-adic case. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2019-10, Vol.372 (7), p.4605-4626
Hauptverfasser: FILI, PAUL A., POTTMEYER, LUKAS
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4626
container_issue 7
container_start_page 4605
container_title Transactions of the American Mathematical Society
container_volume 372
creator FILI, PAUL A.
POTTMEYER, LUKAS
description In an earlier work, the first author and Petsche used potential theoretic techniques to establish a lower bound for the height of algebraic numbers that satisfy splitting conditions such as being totally real or p-adic, improving on earlier work of Bombieri and Zannier in the totally p-adic case. These bounds applied as the degree of the algebraic number over the rationals tended towards infinity. In this paper, we use discrete energy approximation techniques on the Berkovich projective line to make the dependence on the degree in these bounds explicit, and we establish lower bounds for algebraic numbers which depend only on local properties of the numbers.
doi_str_mv 10.1090/tran/7656
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_7656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26788950</jstor_id><sourcerecordid>26788950</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-d9fbe16117d7a622e91e8a1cdc0272ac3ee987bc50574efff2b85688127c21303</originalsourceid><addsrcrecordid>eNp9j01LAzEQQIMouFYP_gBhD148rJ3Jbr6OUvyCggh6XrLZpE1psyVJBf-9u1Q8eplhmMeDR8g1wj2CgnmOOswFZ_yEFAhSVlwyOCUFANBKqUack4uUNuMJjeQFYe8HHbLPOvsvW66tX61z2Q2H0KdyHDaWab_1OfuwKs0Qep_9ENIlOXN6m-zV756Rz6fHj8VLtXx7fl08LCtdI8tVr1xnkSOKXmhOqVVopUbTG6CCalNbq6ToDAMmGuuco51kXEqkwlCsoZ6Ru6PXxCGlaF27j36n43eL0E697dTbTr0je3NkNykP8Q-kXEip2OS6Pf71Lv2j-QE6f17z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantitative height bounds under splitting conditions</title><source>American Mathematical Society Publications</source><creator>FILI, PAUL A. ; POTTMEYER, LUKAS</creator><creatorcontrib>FILI, PAUL A. ; POTTMEYER, LUKAS</creatorcontrib><description>In an earlier work, the first author and Petsche used potential theoretic techniques to establish a lower bound for the height of algebraic numbers that satisfy splitting conditions such as being totally real or p-adic, improving on earlier work of Bombieri and Zannier in the totally p-adic case. These bounds applied as the degree of the algebraic number over the rationals tended towards infinity. In this paper, we use discrete energy approximation techniques on the Berkovich projective line to make the dependence on the degree in these bounds explicit, and we establish lower bounds for algebraic numbers which depend only on local properties of the numbers.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/7656</identifier><language>eng</language><publisher>American Mathematical Society</publisher><ispartof>Transactions of the American Mathematical Society, 2019-10, Vol.372 (7), p.4605-4626</ispartof><rights>Copyright 2019, American Mathematical Society</rights><rights>2019 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-d9fbe16117d7a622e91e8a1cdc0272ac3ee987bc50574efff2b85688127c21303</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/tran/2019-372-07/S0002-9947-2019-07656-0/S0002-9947-2019-07656-0.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/tran/2019-372-07/S0002-9947-2019-07656-0/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23327,27923,27924,77707,77717</link.rule.ids></links><search><creatorcontrib>FILI, PAUL A.</creatorcontrib><creatorcontrib>POTTMEYER, LUKAS</creatorcontrib><title>Quantitative height bounds under splitting conditions</title><title>Transactions of the American Mathematical Society</title><description>In an earlier work, the first author and Petsche used potential theoretic techniques to establish a lower bound for the height of algebraic numbers that satisfy splitting conditions such as being totally real or p-adic, improving on earlier work of Bombieri and Zannier in the totally p-adic case. These bounds applied as the degree of the algebraic number over the rationals tended towards infinity. In this paper, we use discrete energy approximation techniques on the Berkovich projective line to make the dependence on the degree in these bounds explicit, and we establish lower bounds for algebraic numbers which depend only on local properties of the numbers.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9j01LAzEQQIMouFYP_gBhD148rJ3Jbr6OUvyCggh6XrLZpE1psyVJBf-9u1Q8eplhmMeDR8g1wj2CgnmOOswFZ_yEFAhSVlwyOCUFANBKqUack4uUNuMJjeQFYe8HHbLPOvsvW66tX61z2Q2H0KdyHDaWab_1OfuwKs0Qep_9ENIlOXN6m-zV756Rz6fHj8VLtXx7fl08LCtdI8tVr1xnkSOKXmhOqVVopUbTG6CCalNbq6ToDAMmGuuco51kXEqkwlCsoZ6Ru6PXxCGlaF27j36n43eL0E697dTbTr0je3NkNykP8Q-kXEip2OS6Pf71Lv2j-QE6f17z</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>FILI, PAUL A.</creator><creator>POTTMEYER, LUKAS</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191001</creationdate><title>Quantitative height bounds under splitting conditions</title><author>FILI, PAUL A. ; POTTMEYER, LUKAS</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-d9fbe16117d7a622e91e8a1cdc0272ac3ee987bc50574efff2b85688127c21303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FILI, PAUL A.</creatorcontrib><creatorcontrib>POTTMEYER, LUKAS</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FILI, PAUL A.</au><au>POTTMEYER, LUKAS</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative height bounds under splitting conditions</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>372</volume><issue>7</issue><spage>4605</spage><epage>4626</epage><pages>4605-4626</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>In an earlier work, the first author and Petsche used potential theoretic techniques to establish a lower bound for the height of algebraic numbers that satisfy splitting conditions such as being totally real or p-adic, improving on earlier work of Bombieri and Zannier in the totally p-adic case. These bounds applied as the degree of the algebraic number over the rationals tended towards infinity. In this paper, we use discrete energy approximation techniques on the Berkovich projective line to make the dependence on the degree in these bounds explicit, and we establish lower bounds for algebraic numbers which depend only on local properties of the numbers.</abstract><pub>American Mathematical Society</pub><doi>10.1090/tran/7656</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2019-10, Vol.372 (7), p.4605-4626
issn 0002-9947
1088-6850
language eng
recordid cdi_crossref_primary_10_1090_tran_7656
source American Mathematical Society Publications
title Quantitative height bounds under splitting conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A59%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20height%20bounds%20under%20splitting%20conditions&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=FILI,%20PAUL%20A.&rft.date=2019-10-01&rft.volume=372&rft.issue=7&rft.spage=4605&rft.epage=4626&rft.pages=4605-4626&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/7656&rft_dat=%3Cjstor_cross%3E26788950%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26788950&rfr_iscdi=true