The \Delta^0_2 Turing degrees: Automorphisms and Definability

We prove that the \Delta ^0_2 Turing degrees have a finite automorphism base. We apply this result to show that the automorphism group of {\mathcal D}_T(\leq \mathbf {0'}) is countable and that all its members have arithmetic presentations. We prove that every relation on {\mathcal D}_T(\leq \m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2018-02, Vol.370 (2), p.1351-1375
Hauptverfasser: Slaman, Theodore A., Soskova, Mariya I.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that the \Delta ^0_2 Turing degrees have a finite automorphism base. We apply this result to show that the automorphism group of {\mathcal D}_T(\leq \mathbf {0'}) is countable and that all its members have arithmetic presentations. We prove that every relation on {\mathcal D}_T(\leq \mathbf {0'}) induced by an arithmetically definable degree invariant relation is definable with finitely many \Delta ^0_2 parameters and show that rigidity for {\mathcal D}_T(\leq \mathbf {0'}) is equivalent to its biinterpretability with first order arithmetic.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/7187