Ricci curvatures on Hermitian manifolds
In this paper, we introduce the first Aeppli-Chern class for complex manifolds and show that the (1,1)-component of the curvature 2-form of the Levi-Civita connection on the anti-canonical line bundle represents this class. We systematically investigate the relationship between a variety of Ricci cu...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2017-07, Vol.369 (7), p.5157-5196 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5196 |
---|---|
container_issue | 7 |
container_start_page | 5157 |
container_title | Transactions of the American Mathematical Society |
container_volume | 369 |
creator | LIU, KEFENG YANG, XIAOKUI |
description | In this paper, we introduce the first Aeppli-Chern class for complex manifolds and show that the (1,1)-component of the curvature 2-form of the Levi-Civita connection on the anti-canonical line bundle represents this class. We systematically investigate the relationship between a variety of Ricci curvatures on Hermitian manifolds and the background Riemannian manifolds. Moreover, we study non-Kähler Calabi-Yau manifolds by using the first Aeppli-Chern class and the Levi-Civita Ricci-flat metrics. In particular, we construct explicit Levi-Civita Ricci-flat metrics on Hopf manifolds \mathbb{S}^{2n-1}\times \mathbb{S}^1. We also construct a smooth family of Gauduchon metrics on a compact Hermitian manifold such that the metrics are in the same first Aeppli-Chern class, and their first Chern-Ricci curvatures are the same and non-negative, but their Riemannian scalar curvatures are constant and vary smoothly between negative infinity and a positive number. In particular, it shows that Hermitian manifolds with non-negative first Chern class can admit Hermitian metrics with strictly negative Riemannian scalar curvature. |
doi_str_mv | 10.1090/tran/7000 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_7000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90006144</jstor_id><sourcerecordid>90006144</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-5e4a68e30852bd9077d52d3c7739b10316c3798315e68220a71ee227d69bfccf3</originalsourceid><addsrcrecordid>eNp9j0tLxDAUhYMoWEcX_gChC0FcdOYmaV5LGUZnYEAQXZc0D8gwbSXpCP57UyouXV3O_T4OHIRuMSwxKFiNUfcrAQBnqMAgZcUlg3NU5A-plKrFJbpK6ZAj1JIX6OEtGBNKc4pfejxFl8qhL7cudmEMui873Qc_HG26RhdeH5O7-b0L9PG8eV9vq_3ry279tK80xWysmKs1l46CZKS1CoSwjFhqhKCqxUAxN1QomV3HJSGgBXaOEGG5ar0xni7Q49xr4pBSdL75jKHT8bvB0EwLm2lhMy3M7t3sHtI4xD9RZcZxXWd-P3PdpX9qfgDaY1gG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ricci curvatures on Hermitian manifolds</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>JSTOR Mathematics & Statistics</source><source>American Mathematical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>JSTOR</source><creator>LIU, KEFENG ; YANG, XIAOKUI</creator><creatorcontrib>LIU, KEFENG ; YANG, XIAOKUI</creatorcontrib><description>In this paper, we introduce the first Aeppli-Chern class for complex manifolds and show that the (1,1)-component of the curvature 2-form of the Levi-Civita connection on the anti-canonical line bundle represents this class. We systematically investigate the relationship between a variety of Ricci curvatures on Hermitian manifolds and the background Riemannian manifolds. Moreover, we study non-Kähler Calabi-Yau manifolds by using the first Aeppli-Chern class and the Levi-Civita Ricci-flat metrics. In particular, we construct explicit Levi-Civita Ricci-flat metrics on Hopf manifolds \mathbb{S}^{2n-1}\times \mathbb{S}^1. We also construct a smooth family of Gauduchon metrics on a compact Hermitian manifold such that the metrics are in the same first Aeppli-Chern class, and their first Chern-Ricci curvatures are the same and non-negative, but their Riemannian scalar curvatures are constant and vary smoothly between negative infinity and a positive number. In particular, it shows that Hermitian manifolds with non-negative first Chern class can admit Hermitian metrics with strictly negative Riemannian scalar curvature.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/7000</identifier><language>eng</language><publisher>American Mathematical Society</publisher><ispartof>Transactions of the American Mathematical Society, 2017-07, Vol.369 (7), p.5157-5196</ispartof><rights>Copyright 2017, American Mathematical Society</rights><rights>2017 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-5e4a68e30852bd9077d52d3c7739b10316c3798315e68220a71ee227d69bfccf3</citedby><cites>FETCH-LOGICAL-a315t-5e4a68e30852bd9077d52d3c7739b10316c3798315e68220a71ee227d69bfccf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/tran/2017-369-07/S0002-9947-2017-07000-8/S0002-9947-2017-07000-8.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/tran/2017-369-07/S0002-9947-2017-07000-8/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,780,784,803,832,23324,23328,27924,27925,58017,58021,58250,58254,77836,77838,77846,77848</link.rule.ids></links><search><creatorcontrib>LIU, KEFENG</creatorcontrib><creatorcontrib>YANG, XIAOKUI</creatorcontrib><title>Ricci curvatures on Hermitian manifolds</title><title>Transactions of the American Mathematical Society</title><description>In this paper, we introduce the first Aeppli-Chern class for complex manifolds and show that the (1,1)-component of the curvature 2-form of the Levi-Civita connection on the anti-canonical line bundle represents this class. We systematically investigate the relationship between a variety of Ricci curvatures on Hermitian manifolds and the background Riemannian manifolds. Moreover, we study non-Kähler Calabi-Yau manifolds by using the first Aeppli-Chern class and the Levi-Civita Ricci-flat metrics. In particular, we construct explicit Levi-Civita Ricci-flat metrics on Hopf manifolds \mathbb{S}^{2n-1}\times \mathbb{S}^1. We also construct a smooth family of Gauduchon metrics on a compact Hermitian manifold such that the metrics are in the same first Aeppli-Chern class, and their first Chern-Ricci curvatures are the same and non-negative, but their Riemannian scalar curvatures are constant and vary smoothly between negative infinity and a positive number. In particular, it shows that Hermitian manifolds with non-negative first Chern class can admit Hermitian metrics with strictly negative Riemannian scalar curvature.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9j0tLxDAUhYMoWEcX_gChC0FcdOYmaV5LGUZnYEAQXZc0D8gwbSXpCP57UyouXV3O_T4OHIRuMSwxKFiNUfcrAQBnqMAgZcUlg3NU5A-plKrFJbpK6ZAj1JIX6OEtGBNKc4pfejxFl8qhL7cudmEMui873Qc_HG26RhdeH5O7-b0L9PG8eV9vq_3ry279tK80xWysmKs1l46CZKS1CoSwjFhqhKCqxUAxN1QomV3HJSGgBXaOEGG5ar0xni7Q49xr4pBSdL75jKHT8bvB0EwLm2lhMy3M7t3sHtI4xD9RZcZxXWd-P3PdpX9qfgDaY1gG</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>LIU, KEFENG</creator><creator>YANG, XIAOKUI</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170701</creationdate><title>Ricci curvatures on Hermitian manifolds</title><author>LIU, KEFENG ; YANG, XIAOKUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-5e4a68e30852bd9077d52d3c7739b10316c3798315e68220a71ee227d69bfccf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LIU, KEFENG</creatorcontrib><creatorcontrib>YANG, XIAOKUI</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LIU, KEFENG</au><au>YANG, XIAOKUI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ricci curvatures on Hermitian manifolds</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2017-07-01</date><risdate>2017</risdate><volume>369</volume><issue>7</issue><spage>5157</spage><epage>5196</epage><pages>5157-5196</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>In this paper, we introduce the first Aeppli-Chern class for complex manifolds and show that the (1,1)-component of the curvature 2-form of the Levi-Civita connection on the anti-canonical line bundle represents this class. We systematically investigate the relationship between a variety of Ricci curvatures on Hermitian manifolds and the background Riemannian manifolds. Moreover, we study non-Kähler Calabi-Yau manifolds by using the first Aeppli-Chern class and the Levi-Civita Ricci-flat metrics. In particular, we construct explicit Levi-Civita Ricci-flat metrics on Hopf manifolds \mathbb{S}^{2n-1}\times \mathbb{S}^1. We also construct a smooth family of Gauduchon metrics on a compact Hermitian manifold such that the metrics are in the same first Aeppli-Chern class, and their first Chern-Ricci curvatures are the same and non-negative, but their Riemannian scalar curvatures are constant and vary smoothly between negative infinity and a positive number. In particular, it shows that Hermitian manifolds with non-negative first Chern class can admit Hermitian metrics with strictly negative Riemannian scalar curvature.</abstract><pub>American Mathematical Society</pub><doi>10.1090/tran/7000</doi><tpages>40</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9947 |
ispartof | Transactions of the American Mathematical Society, 2017-07, Vol.369 (7), p.5157-5196 |
issn | 0002-9947 1088-6850 |
language | eng |
recordid | cdi_crossref_primary_10_1090_tran_7000 |
source | American Mathematical Society Publications (Freely Accessible); JSTOR Mathematics & Statistics; American Mathematical Society Journals; EZB-FREE-00999 freely available EZB journals; JSTOR |
title | Ricci curvatures on Hermitian manifolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A38%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ricci%20curvatures%20on%20Hermitian%20manifolds&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=LIU,%20KEFENG&rft.date=2017-07-01&rft.volume=369&rft.issue=7&rft.spage=5157&rft.epage=5196&rft.pages=5157-5196&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/7000&rft_dat=%3Cjstor_cross%3E90006144%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=90006144&rfr_iscdi=true |