A framework for forcing constructions at successors of singular cardinals

We describe a framework for proving consistency results about singular cardinals of arbitrary cofinality and their successors. This framework allows the construction of models in which the Singular Cardinals Hypothesis fails at a singular cardinal κ\kappa of uncountable cofinality, while κ+\kappa ^+...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2017-10, Vol.369 (10), p.7405-7441
Hauptverfasser: Cummings, James, Džamonja, Mirna, Magidor, Menachem, Morgan, Charles, Shelah, Saharon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe a framework for proving consistency results about singular cardinals of arbitrary cofinality and their successors. This framework allows the construction of models in which the Singular Cardinals Hypothesis fails at a singular cardinal κ\kappa of uncountable cofinality, while κ+\kappa ^+ enjoys various combinatorial properties. As a sample application, we prove the consistency (relative to that of ZFC plus a supercompact cardinal) of there being a strong limit singular cardinal κ\kappa of uncountable cofinality where SCH fails and such that there is a collection of size less than 2κ+2^{\kappa ^+} of graphs on κ+\kappa ^+ such that any graph on κ+\kappa ^+ embeds into one of the graphs in the collection.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/6974