Lower bounds on the arithmetic self-intersection number of the relative dualizing sheaf on arithmetic surfaces
We give an explicitly computable lower bound for the arithmetic self-intersection number \overline {\omega }^2 of the dualizing sheaf on a large class of arithmetic surfaces. If some technical conditions are satisfied, then this lower bound is positive. In particular, these technical conditions are...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2017-03, Vol.369 (3), p.1869-1894 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1894 |
---|---|
container_issue | 3 |
container_start_page | 1869 |
container_title | Transactions of the American Mathematical Society |
container_volume | 369 |
creator | Ulf Kühn J. Steffen Müller |
description | We give an explicitly computable lower bound for the arithmetic self-intersection number \overline {\omega }^2 of the dualizing sheaf on a large class of arithmetic surfaces. If some technical conditions are satisfied, then this lower bound is positive. In particular, these technical conditions are always satisfied for minimal arithmetic surfaces with simple multiplicities and at least one reducible fiber, but we also use our techniques to obtain lower bounds for some arithmetic surfaces with non-reduced fibers. |
doi_str_mv | 10.1090/tran/6787 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_6787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>tranamermathsoci.369.3.1869</jstor_id><sourcerecordid>tranamermathsoci.369.3.1869</sourcerecordid><originalsourceid>FETCH-LOGICAL-a299t-ef2598c146ca593f4ce92a271e18cba3ca1c5b7b58a05721bfc0e19a3798bfd3</originalsourceid><addsrcrecordid>eNp9kDtLBDEURoMouK4W_oMUNhbjJvNMSll8wYLN9uEme-NkmZlIklH01zvjilhZXS6cc4qPkEvObjiTbJUCDKu6Ec0RWXAmRFaLih2TBWMsz6Qsm1NyFuN-elkp6gUZNv4dA9V-HHaR-oGmFikEl9oekzM0YmczNyQMEU1yEzCMvZ4Mb7_RgB0k94Z0N0LnPt3wQmOLYOfU38wYLBiM5-TEQhfx4ucuyfb-brt-zDbPD0_r200GuZQpQ5tXUhhe1gYqWdjSoMwhbzhyYTQUBripdKMrAaxqcq6tYcglFI0U2u6KJbk-ZE3wMQa06jW4HsKH4kzNO6l5JzXvNLHswO5j8uEXnAHoMfSQ2uiNU0UtVaG4qOWkXB0U6OM_5S_wP3xW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lower bounds on the arithmetic self-intersection number of the relative dualizing sheaf on arithmetic surfaces</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>American Mathematical Society Publications</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ulf Kühn ; J. Steffen Müller</creator><creatorcontrib>Ulf Kühn ; J. Steffen Müller</creatorcontrib><description>We give an explicitly computable lower bound for the arithmetic self-intersection number \overline {\omega }^2 of the dualizing sheaf on a large class of arithmetic surfaces. If some technical conditions are satisfied, then this lower bound is positive. In particular, these technical conditions are always satisfied for minimal arithmetic surfaces with simple multiplicities and at least one reducible fiber, but we also use our techniques to obtain lower bounds for some arithmetic surfaces with non-reduced fibers.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/6787</identifier><language>eng</language><publisher>American Mathematical Society</publisher><ispartof>Transactions of the American Mathematical Society, 2017-03, Vol.369 (3), p.1869-1894</ispartof><rights>Copyright 2016, American Mathematical Society</rights><rights>2016 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a299t-ef2598c146ca593f4ce92a271e18cba3ca1c5b7b58a05721bfc0e19a3798bfd3</citedby><cites>FETCH-LOGICAL-a299t-ef2598c146ca593f4ce92a271e18cba3ca1c5b7b58a05721bfc0e19a3798bfd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/tran/2017-369-03/S0002-9947-2016-06787-2/S0002-9947-2016-06787-2.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/tran/2017-369-03/S0002-9947-2016-06787-2/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,780,784,803,832,23324,23328,27924,27925,58017,58021,58250,58254,77836,77838,77846,77848</link.rule.ids></links><search><creatorcontrib>Ulf Kühn</creatorcontrib><creatorcontrib>J. Steffen Müller</creatorcontrib><title>Lower bounds on the arithmetic self-intersection number of the relative dualizing sheaf on arithmetic surfaces</title><title>Transactions of the American Mathematical Society</title><description>We give an explicitly computable lower bound for the arithmetic self-intersection number \overline {\omega }^2 of the dualizing sheaf on a large class of arithmetic surfaces. If some technical conditions are satisfied, then this lower bound is positive. In particular, these technical conditions are always satisfied for minimal arithmetic surfaces with simple multiplicities and at least one reducible fiber, but we also use our techniques to obtain lower bounds for some arithmetic surfaces with non-reduced fibers.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kDtLBDEURoMouK4W_oMUNhbjJvNMSll8wYLN9uEme-NkmZlIklH01zvjilhZXS6cc4qPkEvObjiTbJUCDKu6Ec0RWXAmRFaLih2TBWMsz6Qsm1NyFuN-elkp6gUZNv4dA9V-HHaR-oGmFikEl9oekzM0YmczNyQMEU1yEzCMvZ4Mb7_RgB0k94Z0N0LnPt3wQmOLYOfU38wYLBiM5-TEQhfx4ucuyfb-brt-zDbPD0_r200GuZQpQ5tXUhhe1gYqWdjSoMwhbzhyYTQUBripdKMrAaxqcq6tYcglFI0U2u6KJbk-ZE3wMQa06jW4HsKH4kzNO6l5JzXvNLHswO5j8uEXnAHoMfSQ2uiNU0UtVaG4qOWkXB0U6OM_5S_wP3xW</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Ulf Kühn</creator><creator>J. Steffen Müller</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170301</creationdate><title>Lower bounds on the arithmetic self-intersection number of the relative dualizing sheaf on arithmetic surfaces</title><author>Ulf Kühn ; J. Steffen Müller</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a299t-ef2598c146ca593f4ce92a271e18cba3ca1c5b7b58a05721bfc0e19a3798bfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ulf Kühn</creatorcontrib><creatorcontrib>J. Steffen Müller</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ulf Kühn</au><au>J. Steffen Müller</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lower bounds on the arithmetic self-intersection number of the relative dualizing sheaf on arithmetic surfaces</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2017-03-01</date><risdate>2017</risdate><volume>369</volume><issue>3</issue><spage>1869</spage><epage>1894</epage><pages>1869-1894</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>We give an explicitly computable lower bound for the arithmetic self-intersection number \overline {\omega }^2 of the dualizing sheaf on a large class of arithmetic surfaces. If some technical conditions are satisfied, then this lower bound is positive. In particular, these technical conditions are always satisfied for minimal arithmetic surfaces with simple multiplicities and at least one reducible fiber, but we also use our techniques to obtain lower bounds for some arithmetic surfaces with non-reduced fibers.</abstract><pub>American Mathematical Society</pub><doi>10.1090/tran/6787</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9947 |
ispartof | Transactions of the American Mathematical Society, 2017-03, Vol.369 (3), p.1869-1894 |
issn | 0002-9947 1088-6850 |
language | eng |
recordid | cdi_crossref_primary_10_1090_tran_6787 |
source | American Mathematical Society Publications (Freely Accessible); JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; American Mathematical Society Publications; EZB-FREE-00999 freely available EZB journals |
title | Lower bounds on the arithmetic self-intersection number of the relative dualizing sheaf on arithmetic surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A24%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lower%20bounds%20on%20the%20arithmetic%20self-intersection%20number%20of%20the%20relative%20dualizing%20sheaf%20on%20arithmetic%20surfaces&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Ulf%20K%C3%BChn&rft.date=2017-03-01&rft.volume=369&rft.issue=3&rft.spage=1869&rft.epage=1894&rft.pages=1869-1894&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/6787&rft_dat=%3Cjstor_cross%3Etranamermathsoci.369.3.1869%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=tranamermathsoci.369.3.1869&rfr_iscdi=true |