Lower bounds on the arithmetic self-intersection number of the relative dualizing sheaf on arithmetic surfaces

We give an explicitly computable lower bound for the arithmetic self-intersection number \overline {\omega }^2 of the dualizing sheaf on a large class of arithmetic surfaces. If some technical conditions are satisfied, then this lower bound is positive. In particular, these technical conditions are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2017-03, Vol.369 (3), p.1869-1894
Hauptverfasser: Ulf Kühn, J. Steffen Müller
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1894
container_issue 3
container_start_page 1869
container_title Transactions of the American Mathematical Society
container_volume 369
creator Ulf Kühn
J. Steffen Müller
description We give an explicitly computable lower bound for the arithmetic self-intersection number \overline {\omega }^2 of the dualizing sheaf on a large class of arithmetic surfaces. If some technical conditions are satisfied, then this lower bound is positive. In particular, these technical conditions are always satisfied for minimal arithmetic surfaces with simple multiplicities and at least one reducible fiber, but we also use our techniques to obtain lower bounds for some arithmetic surfaces with non-reduced fibers.
doi_str_mv 10.1090/tran/6787
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_6787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>tranamermathsoci.369.3.1869</jstor_id><sourcerecordid>tranamermathsoci.369.3.1869</sourcerecordid><originalsourceid>FETCH-LOGICAL-a299t-ef2598c146ca593f4ce92a271e18cba3ca1c5b7b58a05721bfc0e19a3798bfd3</originalsourceid><addsrcrecordid>eNp9kDtLBDEURoMouK4W_oMUNhbjJvNMSll8wYLN9uEme-NkmZlIklH01zvjilhZXS6cc4qPkEvObjiTbJUCDKu6Ec0RWXAmRFaLih2TBWMsz6Qsm1NyFuN-elkp6gUZNv4dA9V-HHaR-oGmFikEl9oekzM0YmczNyQMEU1yEzCMvZ4Mb7_RgB0k94Z0N0LnPt3wQmOLYOfU38wYLBiM5-TEQhfx4ucuyfb-brt-zDbPD0_r200GuZQpQ5tXUhhe1gYqWdjSoMwhbzhyYTQUBripdKMrAaxqcq6tYcglFI0U2u6KJbk-ZE3wMQa06jW4HsKH4kzNO6l5JzXvNLHswO5j8uEXnAHoMfSQ2uiNU0UtVaG4qOWkXB0U6OM_5S_wP3xW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lower bounds on the arithmetic self-intersection number of the relative dualizing sheaf on arithmetic surfaces</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>American Mathematical Society Publications</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ulf Kühn ; J. Steffen Müller</creator><creatorcontrib>Ulf Kühn ; J. Steffen Müller</creatorcontrib><description>We give an explicitly computable lower bound for the arithmetic self-intersection number \overline {\omega }^2 of the dualizing sheaf on a large class of arithmetic surfaces. If some technical conditions are satisfied, then this lower bound is positive. In particular, these technical conditions are always satisfied for minimal arithmetic surfaces with simple multiplicities and at least one reducible fiber, but we also use our techniques to obtain lower bounds for some arithmetic surfaces with non-reduced fibers.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/6787</identifier><language>eng</language><publisher>American Mathematical Society</publisher><ispartof>Transactions of the American Mathematical Society, 2017-03, Vol.369 (3), p.1869-1894</ispartof><rights>Copyright 2016, American Mathematical Society</rights><rights>2016 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a299t-ef2598c146ca593f4ce92a271e18cba3ca1c5b7b58a05721bfc0e19a3798bfd3</citedby><cites>FETCH-LOGICAL-a299t-ef2598c146ca593f4ce92a271e18cba3ca1c5b7b58a05721bfc0e19a3798bfd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/tran/2017-369-03/S0002-9947-2016-06787-2/S0002-9947-2016-06787-2.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/tran/2017-369-03/S0002-9947-2016-06787-2/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,780,784,803,832,23324,23328,27924,27925,58017,58021,58250,58254,77836,77838,77846,77848</link.rule.ids></links><search><creatorcontrib>Ulf Kühn</creatorcontrib><creatorcontrib>J. Steffen Müller</creatorcontrib><title>Lower bounds on the arithmetic self-intersection number of the relative dualizing sheaf on arithmetic surfaces</title><title>Transactions of the American Mathematical Society</title><description>We give an explicitly computable lower bound for the arithmetic self-intersection number \overline {\omega }^2 of the dualizing sheaf on a large class of arithmetic surfaces. If some technical conditions are satisfied, then this lower bound is positive. In particular, these technical conditions are always satisfied for minimal arithmetic surfaces with simple multiplicities and at least one reducible fiber, but we also use our techniques to obtain lower bounds for some arithmetic surfaces with non-reduced fibers.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kDtLBDEURoMouK4W_oMUNhbjJvNMSll8wYLN9uEme-NkmZlIklH01zvjilhZXS6cc4qPkEvObjiTbJUCDKu6Ec0RWXAmRFaLih2TBWMsz6Qsm1NyFuN-elkp6gUZNv4dA9V-HHaR-oGmFikEl9oekzM0YmczNyQMEU1yEzCMvZ4Mb7_RgB0k94Z0N0LnPt3wQmOLYOfU38wYLBiM5-TEQhfx4ucuyfb-brt-zDbPD0_r200GuZQpQ5tXUhhe1gYqWdjSoMwhbzhyYTQUBripdKMrAaxqcq6tYcglFI0U2u6KJbk-ZE3wMQa06jW4HsKH4kzNO6l5JzXvNLHswO5j8uEXnAHoMfSQ2uiNU0UtVaG4qOWkXB0U6OM_5S_wP3xW</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Ulf Kühn</creator><creator>J. Steffen Müller</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170301</creationdate><title>Lower bounds on the arithmetic self-intersection number of the relative dualizing sheaf on arithmetic surfaces</title><author>Ulf Kühn ; J. Steffen Müller</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a299t-ef2598c146ca593f4ce92a271e18cba3ca1c5b7b58a05721bfc0e19a3798bfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ulf Kühn</creatorcontrib><creatorcontrib>J. Steffen Müller</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ulf Kühn</au><au>J. Steffen Müller</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lower bounds on the arithmetic self-intersection number of the relative dualizing sheaf on arithmetic surfaces</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2017-03-01</date><risdate>2017</risdate><volume>369</volume><issue>3</issue><spage>1869</spage><epage>1894</epage><pages>1869-1894</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>We give an explicitly computable lower bound for the arithmetic self-intersection number \overline {\omega }^2 of the dualizing sheaf on a large class of arithmetic surfaces. If some technical conditions are satisfied, then this lower bound is positive. In particular, these technical conditions are always satisfied for minimal arithmetic surfaces with simple multiplicities and at least one reducible fiber, but we also use our techniques to obtain lower bounds for some arithmetic surfaces with non-reduced fibers.</abstract><pub>American Mathematical Society</pub><doi>10.1090/tran/6787</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2017-03, Vol.369 (3), p.1869-1894
issn 0002-9947
1088-6850
language eng
recordid cdi_crossref_primary_10_1090_tran_6787
source American Mathematical Society Publications (Freely Accessible); JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; American Mathematical Society Publications; EZB-FREE-00999 freely available EZB journals
title Lower bounds on the arithmetic self-intersection number of the relative dualizing sheaf on arithmetic surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A24%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lower%20bounds%20on%20the%20arithmetic%20self-intersection%20number%20of%20the%20relative%20dualizing%20sheaf%20on%20arithmetic%20surfaces&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Ulf%20K%C3%BChn&rft.date=2017-03-01&rft.volume=369&rft.issue=3&rft.spage=1869&rft.epage=1894&rft.pages=1869-1894&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/6787&rft_dat=%3Cjstor_cross%3Etranamermathsoci.369.3.1869%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=tranamermathsoci.369.3.1869&rfr_iscdi=true