Large deviations for systems with non-uniform structure

We use a weak Gibbs property and a weak form of specification to derive level-2 large deviations principles for symbolic systems equipped with a large class of reference measures. This has applications to a broad class of symbolic systems, including β\beta-shifts, SS-gap shifts, and their factors. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2017-06, Vol.369 (6), p.4167-4192
Hauptverfasser: Climenhaga, Vaughn, Thompson, Daniel J., Yamamoto, Kenichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4192
container_issue 6
container_start_page 4167
container_title Transactions of the American Mathematical Society
container_volume 369
creator Climenhaga, Vaughn
Thompson, Daniel J.
Yamamoto, Kenichiro
description We use a weak Gibbs property and a weak form of specification to derive level-2 large deviations principles for symbolic systems equipped with a large class of reference measures. This has applications to a broad class of symbolic systems, including β\beta-shifts, SS-gap shifts, and their factors. A crucial step in our approach is to prove a ‘horseshoe theorem’ for these systems.
doi_str_mv 10.1090/tran/6786
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_6786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90003965</jstor_id><sourcerecordid>90003965</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-c4207e60f60f0d5bd9c4c9ddf758e6502ca4a7521fa29959971b24f4ce3161353</originalsourceid><addsrcrecordid>eNp9j01LxDAQhoMoWFcP_gAhBy8e4k7SfB5lcVUoeNFzyaaJdrGtJKmy_96WikdhYJh3Hl54ELqkcEvBwDpH26-l0vIIFRS0JlILOEYFADBiDFen6Cyl_XQC17JAqrLxzePGf7U2t0OfcBgiToeUfZfwd5vfcT_0ZOzbKe9wynF0eYz-HJ0E-5H8xe9eodft_cvmkVTPD0-bu4rYkopMHGegvIQwDTRi1xjHnWmaoIT2UgBzllslGA2WGSOMUXTHeODOl1TSUpQrdLP0ujikFH2oP2Pb2XioKdSzcT0b17PxxF4t7D7lIf6BZnItjZy7rpe_7dI_NT-xr18h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Large deviations for systems with non-uniform structure</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><creator>Climenhaga, Vaughn ; Thompson, Daniel J. ; Yamamoto, Kenichiro</creator><creatorcontrib>Climenhaga, Vaughn ; Thompson, Daniel J. ; Yamamoto, Kenichiro</creatorcontrib><description>We use a weak Gibbs property and a weak form of specification to derive level-2 large deviations principles for symbolic systems equipped with a large class of reference measures. This has applications to a broad class of symbolic systems, including β\beta-shifts, SS-gap shifts, and their factors. A crucial step in our approach is to prove a ‘horseshoe theorem’ for these systems.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/6786</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Research article</subject><ispartof>Transactions of the American Mathematical Society, 2017-06, Vol.369 (6), p.4167-4192</ispartof><rights>Copyright 2017 American Mathematical Society</rights><rights>2017 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-c4207e60f60f0d5bd9c4c9ddf758e6502ca4a7521fa29959971b24f4ce3161353</citedby><cites>FETCH-LOGICAL-a315t-c4207e60f60f0d5bd9c4c9ddf758e6502ca4a7521fa29959971b24f4ce3161353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/tran/2017-369-06/S0002-9947-2017-06786-6/S0002-9947-2017-06786-6.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/tran/2017-369-06/S0002-9947-2017-06786-6/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,776,780,799,828,23304,23308,27903,27904,57995,57999,58228,58232,77582,77584,77592,77594</link.rule.ids></links><search><creatorcontrib>Climenhaga, Vaughn</creatorcontrib><creatorcontrib>Thompson, Daniel J.</creatorcontrib><creatorcontrib>Yamamoto, Kenichiro</creatorcontrib><title>Large deviations for systems with non-uniform structure</title><title>Transactions of the American Mathematical Society</title><addtitle>Trans. Amer. Math. Soc</addtitle><description>We use a weak Gibbs property and a weak form of specification to derive level-2 large deviations principles for symbolic systems equipped with a large class of reference measures. This has applications to a broad class of symbolic systems, including β\beta-shifts, SS-gap shifts, and their factors. A crucial step in our approach is to prove a ‘horseshoe theorem’ for these systems.</description><subject>Research article</subject><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9j01LxDAQhoMoWFcP_gAhBy8e4k7SfB5lcVUoeNFzyaaJdrGtJKmy_96WikdhYJh3Hl54ELqkcEvBwDpH26-l0vIIFRS0JlILOEYFADBiDFen6Cyl_XQC17JAqrLxzePGf7U2t0OfcBgiToeUfZfwd5vfcT_0ZOzbKe9wynF0eYz-HJ0E-5H8xe9eodft_cvmkVTPD0-bu4rYkopMHGegvIQwDTRi1xjHnWmaoIT2UgBzllslGA2WGSOMUXTHeODOl1TSUpQrdLP0ujikFH2oP2Pb2XioKdSzcT0b17PxxF4t7D7lIf6BZnItjZy7rpe_7dI_NT-xr18h</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Climenhaga, Vaughn</creator><creator>Thompson, Daniel J.</creator><creator>Yamamoto, Kenichiro</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170601</creationdate><title>Large deviations for systems with non-uniform structure</title><author>Climenhaga, Vaughn ; Thompson, Daniel J. ; Yamamoto, Kenichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-c4207e60f60f0d5bd9c4c9ddf758e6502ca4a7521fa29959971b24f4ce3161353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Climenhaga, Vaughn</creatorcontrib><creatorcontrib>Thompson, Daniel J.</creatorcontrib><creatorcontrib>Yamamoto, Kenichiro</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Climenhaga, Vaughn</au><au>Thompson, Daniel J.</au><au>Yamamoto, Kenichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large deviations for systems with non-uniform structure</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><stitle>Trans. Amer. Math. Soc</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>369</volume><issue>6</issue><spage>4167</spage><epage>4192</epage><pages>4167-4192</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>We use a weak Gibbs property and a weak form of specification to derive level-2 large deviations principles for symbolic systems equipped with a large class of reference measures. This has applications to a broad class of symbolic systems, including β\beta-shifts, SS-gap shifts, and their factors. A crucial step in our approach is to prove a ‘horseshoe theorem’ for these systems.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/tran/6786</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2017-06, Vol.369 (6), p.4167-4192
issn 0002-9947
1088-6850
language eng
recordid cdi_crossref_primary_10_1090_tran_6786
source American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; Jstor Complete Legacy; American Mathematical Society Publications
subjects Research article
title Large deviations for systems with non-uniform structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A01%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20deviations%20for%20systems%20with%20non-uniform%20structure&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Climenhaga,%20Vaughn&rft.date=2017-06-01&rft.volume=369&rft.issue=6&rft.spage=4167&rft.epage=4192&rft.pages=4167-4192&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/6786&rft_dat=%3Cjstor_cross%3E90003965%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=90003965&rfr_iscdi=true