Local existence of solutions to randomized Gross-Pitaevskii hierarchies

independently randomized Gross-Pitaevskii hierarchy and the , which were first introduced in the author's joint work with Staffilani (2013). For these hierarchies, we construct local-in-time low-regularity solutions in spaces which contain a random component. The constructed density matrices wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2016-03, Vol.368 (3), p.1759-1835
1. Verfasser: Sohinger, Vedran
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1835
container_issue 3
container_start_page 1759
container_title Transactions of the American Mathematical Society
container_volume 368
creator Sohinger, Vedran
description independently randomized Gross-Pitaevskii hierarchy and the , which were first introduced in the author's joint work with Staffilani (2013). For these hierarchies, we construct local-in-time low-regularity solutions in spaces which contain a random component. The constructed density matrices will solve the full randomized hierarchies, thus extending the results from the author and Staffilani's joint work, where solutions solving arbitrarily long subhierarchies were given.
doi_str_mv 10.1090/tran/6479
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_6479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>tranamermathsoci.368.3.1759</jstor_id><sourcerecordid>tranamermathsoci.368.3.1759</sourcerecordid><originalsourceid>FETCH-LOGICAL-a334t-ffe672d53b65c20ceaf02df99db0f6d594e06c31980d9a1279232c59e5c0b7703</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKsL_0EWblyMfUkmyWQpRatQ0IWuQ5oPmtppJImi_vrOUHHp6vLg3MvjIHRJ4IaAglnNZjcTrVRHaEKg6xrRcThGEwCgjVKtPEVnpWyGE9pOTNBimazZYv8VS_U763EKuKTtR41pV3BNeNhzqY8_3uFFTqU0z7Ea_1neYsTr6LPJdohyjk6C2RZ_8ZtT9Hp_9zJ_aJZPi8f57bIxjLW1CcELSR1nK8EtBetNAOqCUm4FQTiuWg_CMqI6cMoQKhVl1HLluYWVlMCm6Pqwa8dnsg_6Pcfe5G9NQI8G9GhAjwYGFg7sptSU_8ARML3PvanrkmzUTHSaaSL5WLk6VExf_lneA4nIbVo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Local existence of solutions to randomized Gross-Pitaevskii hierarchies</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>American Mathematical Society Publications</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sohinger, Vedran</creator><creatorcontrib>Sohinger, Vedran</creatorcontrib><description>independently randomized Gross-Pitaevskii hierarchy and the , which were first introduced in the author's joint work with Staffilani (2013). For these hierarchies, we construct local-in-time low-regularity solutions in spaces which contain a random component. The constructed density matrices will solve the full randomized hierarchies, thus extending the results from the author and Staffilani's joint work, where solutions solving arbitrarily long subhierarchies were given.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/6479</identifier><language>eng</language><publisher>American Mathematical Society</publisher><ispartof>Transactions of the American Mathematical Society, 2016-03, Vol.368 (3), p.1759-1835</ispartof><rights>Copyright 2015, American Mathematical Society</rights><rights>2016 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a334t-ffe672d53b65c20ceaf02df99db0f6d594e06c31980d9a1279232c59e5c0b7703</citedby><cites>FETCH-LOGICAL-a334t-ffe672d53b65c20ceaf02df99db0f6d594e06c31980d9a1279232c59e5c0b7703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/tran/2016-368-03/S0002-9947-2015-06479-4/S0002-9947-2015-06479-4.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/tran/2016-368-03/S0002-9947-2015-06479-4/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,780,784,803,832,23322,23326,27922,27923,58015,58019,58248,58252,77606,77608,77616,77618</link.rule.ids></links><search><creatorcontrib>Sohinger, Vedran</creatorcontrib><title>Local existence of solutions to randomized Gross-Pitaevskii hierarchies</title><title>Transactions of the American Mathematical Society</title><description>independently randomized Gross-Pitaevskii hierarchy and the , which were first introduced in the author's joint work with Staffilani (2013). For these hierarchies, we construct local-in-time low-regularity solutions in spaces which contain a random component. The constructed density matrices will solve the full randomized hierarchies, thus extending the results from the author and Staffilani's joint work, where solutions solving arbitrarily long subhierarchies were given.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKsL_0EWblyMfUkmyWQpRatQ0IWuQ5oPmtppJImi_vrOUHHp6vLg3MvjIHRJ4IaAglnNZjcTrVRHaEKg6xrRcThGEwCgjVKtPEVnpWyGE9pOTNBimazZYv8VS_U763EKuKTtR41pV3BNeNhzqY8_3uFFTqU0z7Ea_1neYsTr6LPJdohyjk6C2RZ_8ZtT9Hp_9zJ_aJZPi8f57bIxjLW1CcELSR1nK8EtBetNAOqCUm4FQTiuWg_CMqI6cMoQKhVl1HLluYWVlMCm6Pqwa8dnsg_6Pcfe5G9NQI8G9GhAjwYGFg7sptSU_8ARML3PvanrkmzUTHSaaSL5WLk6VExf_lneA4nIbVo</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Sohinger, Vedran</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160301</creationdate><title>Local existence of solutions to randomized Gross-Pitaevskii hierarchies</title><author>Sohinger, Vedran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a334t-ffe672d53b65c20ceaf02df99db0f6d594e06c31980d9a1279232c59e5c0b7703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sohinger, Vedran</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sohinger, Vedran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local existence of solutions to randomized Gross-Pitaevskii hierarchies</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2016-03-01</date><risdate>2016</risdate><volume>368</volume><issue>3</issue><spage>1759</spage><epage>1835</epage><pages>1759-1835</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>independently randomized Gross-Pitaevskii hierarchy and the , which were first introduced in the author's joint work with Staffilani (2013). For these hierarchies, we construct local-in-time low-regularity solutions in spaces which contain a random component. The constructed density matrices will solve the full randomized hierarchies, thus extending the results from the author and Staffilani's joint work, where solutions solving arbitrarily long subhierarchies were given.</abstract><pub>American Mathematical Society</pub><doi>10.1090/tran/6479</doi><tpages>77</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2016-03, Vol.368 (3), p.1759-1835
issn 0002-9947
1088-6850
language eng
recordid cdi_crossref_primary_10_1090_tran_6479
source American Mathematical Society Publications (Freely Accessible); JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; American Mathematical Society Publications; EZB-FREE-00999 freely available EZB journals
title Local existence of solutions to randomized Gross-Pitaevskii hierarchies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T16%3A11%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20existence%20of%20solutions%20to%20randomized%20Gross-Pitaevskii%20hierarchies&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Sohinger,%20Vedran&rft.date=2016-03-01&rft.volume=368&rft.issue=3&rft.spage=1759&rft.epage=1835&rft.pages=1759-1835&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/6479&rft_dat=%3Cjstor_cross%3Etranamermathsoci.368.3.1759%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=tranamermathsoci.368.3.1759&rfr_iscdi=true