Local existence of solutions to randomized Gross-Pitaevskii hierarchies
independently randomized Gross-Pitaevskii hierarchy and the , which were first introduced in the author's joint work with Staffilani (2013). For these hierarchies, we construct local-in-time low-regularity solutions in spaces which contain a random component. The constructed density matrices wi...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2016-03, Vol.368 (3), p.1759-1835 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1835 |
---|---|
container_issue | 3 |
container_start_page | 1759 |
container_title | Transactions of the American Mathematical Society |
container_volume | 368 |
creator | Sohinger, Vedran |
description | independently randomized Gross-Pitaevskii hierarchy and the , which were first introduced in the author's joint work with Staffilani (2013). For these hierarchies, we construct local-in-time low-regularity solutions in spaces which contain a random component. The constructed density matrices will solve the full randomized hierarchies, thus extending the results from the author and Staffilani's joint work, where solutions solving arbitrarily long subhierarchies were given. |
doi_str_mv | 10.1090/tran/6479 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_6479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>tranamermathsoci.368.3.1759</jstor_id><sourcerecordid>tranamermathsoci.368.3.1759</sourcerecordid><originalsourceid>FETCH-LOGICAL-a334t-ffe672d53b65c20ceaf02df99db0f6d594e06c31980d9a1279232c59e5c0b7703</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKsL_0EWblyMfUkmyWQpRatQ0IWuQ5oPmtppJImi_vrOUHHp6vLg3MvjIHRJ4IaAglnNZjcTrVRHaEKg6xrRcThGEwCgjVKtPEVnpWyGE9pOTNBimazZYv8VS_U763EKuKTtR41pV3BNeNhzqY8_3uFFTqU0z7Ea_1neYsTr6LPJdohyjk6C2RZ_8ZtT9Hp_9zJ_aJZPi8f57bIxjLW1CcELSR1nK8EtBetNAOqCUm4FQTiuWg_CMqI6cMoQKhVl1HLluYWVlMCm6Pqwa8dnsg_6Pcfe5G9NQI8G9GhAjwYGFg7sptSU_8ARML3PvanrkmzUTHSaaSL5WLk6VExf_lneA4nIbVo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Local existence of solutions to randomized Gross-Pitaevskii hierarchies</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>American Mathematical Society Publications</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sohinger, Vedran</creator><creatorcontrib>Sohinger, Vedran</creatorcontrib><description>independently randomized Gross-Pitaevskii hierarchy and the , which were first introduced in the author's joint work with Staffilani (2013). For these hierarchies, we construct local-in-time low-regularity solutions in spaces which contain a random component. The constructed density matrices will solve the full randomized hierarchies, thus extending the results from the author and Staffilani's joint work, where solutions solving arbitrarily long subhierarchies were given.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/6479</identifier><language>eng</language><publisher>American Mathematical Society</publisher><ispartof>Transactions of the American Mathematical Society, 2016-03, Vol.368 (3), p.1759-1835</ispartof><rights>Copyright 2015, American Mathematical Society</rights><rights>2016 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a334t-ffe672d53b65c20ceaf02df99db0f6d594e06c31980d9a1279232c59e5c0b7703</citedby><cites>FETCH-LOGICAL-a334t-ffe672d53b65c20ceaf02df99db0f6d594e06c31980d9a1279232c59e5c0b7703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/tran/2016-368-03/S0002-9947-2015-06479-4/S0002-9947-2015-06479-4.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/tran/2016-368-03/S0002-9947-2015-06479-4/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,780,784,803,832,23322,23326,27922,27923,58015,58019,58248,58252,77606,77608,77616,77618</link.rule.ids></links><search><creatorcontrib>Sohinger, Vedran</creatorcontrib><title>Local existence of solutions to randomized Gross-Pitaevskii hierarchies</title><title>Transactions of the American Mathematical Society</title><description>independently randomized Gross-Pitaevskii hierarchy and the , which were first introduced in the author's joint work with Staffilani (2013). For these hierarchies, we construct local-in-time low-regularity solutions in spaces which contain a random component. The constructed density matrices will solve the full randomized hierarchies, thus extending the results from the author and Staffilani's joint work, where solutions solving arbitrarily long subhierarchies were given.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKsL_0EWblyMfUkmyWQpRatQ0IWuQ5oPmtppJImi_vrOUHHp6vLg3MvjIHRJ4IaAglnNZjcTrVRHaEKg6xrRcThGEwCgjVKtPEVnpWyGE9pOTNBimazZYv8VS_U763EKuKTtR41pV3BNeNhzqY8_3uFFTqU0z7Ea_1neYsTr6LPJdohyjk6C2RZ_8ZtT9Hp_9zJ_aJZPi8f57bIxjLW1CcELSR1nK8EtBetNAOqCUm4FQTiuWg_CMqI6cMoQKhVl1HLluYWVlMCm6Pqwa8dnsg_6Pcfe5G9NQI8G9GhAjwYGFg7sptSU_8ARML3PvanrkmzUTHSaaSL5WLk6VExf_lneA4nIbVo</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Sohinger, Vedran</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160301</creationdate><title>Local existence of solutions to randomized Gross-Pitaevskii hierarchies</title><author>Sohinger, Vedran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a334t-ffe672d53b65c20ceaf02df99db0f6d594e06c31980d9a1279232c59e5c0b7703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sohinger, Vedran</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sohinger, Vedran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local existence of solutions to randomized Gross-Pitaevskii hierarchies</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2016-03-01</date><risdate>2016</risdate><volume>368</volume><issue>3</issue><spage>1759</spage><epage>1835</epage><pages>1759-1835</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>independently randomized Gross-Pitaevskii hierarchy and the , which were first introduced in the author's joint work with Staffilani (2013). For these hierarchies, we construct local-in-time low-regularity solutions in spaces which contain a random component. The constructed density matrices will solve the full randomized hierarchies, thus extending the results from the author and Staffilani's joint work, where solutions solving arbitrarily long subhierarchies were given.</abstract><pub>American Mathematical Society</pub><doi>10.1090/tran/6479</doi><tpages>77</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9947 |
ispartof | Transactions of the American Mathematical Society, 2016-03, Vol.368 (3), p.1759-1835 |
issn | 0002-9947 1088-6850 |
language | eng |
recordid | cdi_crossref_primary_10_1090_tran_6479 |
source | American Mathematical Society Publications (Freely Accessible); JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; American Mathematical Society Publications; EZB-FREE-00999 freely available EZB journals |
title | Local existence of solutions to randomized Gross-Pitaevskii hierarchies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T16%3A11%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20existence%20of%20solutions%20to%20randomized%20Gross-Pitaevskii%20hierarchies&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Sohinger,%20Vedran&rft.date=2016-03-01&rft.volume=368&rft.issue=3&rft.spage=1759&rft.epage=1835&rft.pages=1759-1835&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/6479&rft_dat=%3Cjstor_cross%3Etranamermathsoci.368.3.1759%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=tranamermathsoci.368.3.1759&rfr_iscdi=true |