On a transport equation with nonlocal drift

In 2005, Córdoba, Córdoba, and Fontelos proved that for some initial data, the following nonlocal-drift variant of the 1D Burgers equation does not have global classical solutions ∂ t θ + u ∂ x θ = 0 , u = H θ , where H is the Hilbert transform. We provide four essentially different proofs of this f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2016-09, Vol.368 (9), p.6159-6188
Hauptverfasser: Silvestre, Luis, Vicol, Vlad
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6188
container_issue 9
container_start_page 6159
container_title Transactions of the American Mathematical Society
container_volume 368
creator Silvestre, Luis
Vicol, Vlad
description In 2005, Córdoba, Córdoba, and Fontelos proved that for some initial data, the following nonlocal-drift variant of the 1D Burgers equation does not have global classical solutions ∂ t θ + u ∂ x θ = 0 , u = H θ , where H is the Hilbert transform. We provide four essentially different proofs of this fact. Moreover, we study possible Hölder regularization effects of this equation and its consequences to the equation with diffusion ∂ t θ + u ∂ x θ + Λ γ θ = 0 , u = H θ , where Λ = (−Δ)1/2, and 1/2 ≤ γ
doi_str_mv 10.1090/tran6651
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran6651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>tranamermathsoci.368.9.6159</jstor_id><sourcerecordid>tranamermathsoci.368.9.6159</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-efd61f0f785e911951c75fef1fd0bf442fa043a8338c29b5a0f82c45396eb1683</originalsourceid><addsrcrecordid>eNp1j01LxDAURYMoWEfBn1BwI0j1pWnSZCmDXzAwG12H1zRhOrTNmETEf29L1Z2rx-Wdc-EScknhloKCuxRwFILTI5JRkLIQksMxyQCgLJSq6lNyFuN-ilBJkZGb7ZhjPkvx4EPK7fsHps6P-WeXdvnox94b7PM2dC6dkxOHfbQXP3dF3h4fXtfPxWb79LK-3xTIGKTCulZQB66W3CpKFaem5s466lpoXFWVDqFiKBmTplQNR3CyNBVnStiGCslW5HrpNcHHGKzTh9ANGL40BT2P1L8jJxQWdB-TD3_c_MfBhgHTLnrTaSakVlpQriblalFwiP8XfwOGw2FV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On a transport equation with nonlocal drift</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>American Mathematical Society Publications</source><creator>Silvestre, Luis ; Vicol, Vlad</creator><creatorcontrib>Silvestre, Luis ; Vicol, Vlad</creatorcontrib><description>In 2005, Córdoba, Córdoba, and Fontelos proved that for some initial data, the following nonlocal-drift variant of the 1D Burgers equation does not have global classical solutions ∂ t θ + u ∂ x θ = 0 , u = H θ , where H is the Hilbert transform. We provide four essentially different proofs of this fact. Moreover, we study possible Hölder regularization effects of this equation and its consequences to the equation with diffusion ∂ t θ + u ∂ x θ + Λ γ θ = 0 , u = H θ , where Λ = (−Δ)1/2, and 1/2 ≤ γ &lt;1. Our results also apply to the model with velocity field u = Λ sHθ, where s ∈ (−1, 1). We conjecture that solutions which arise as limits from vanishing viscosity approximations are bounded in the Hölder class in C (s+1)/2, for all positive time. 2010 Mathematics Subject Classification. Primary 35Q35.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran6651</identifier><language>eng</language><publisher>American Mathematical Society</publisher><ispartof>Transactions of the American Mathematical Society, 2016-09, Vol.368 (9), p.6159-6188</ispartof><rights>Copyright 2015, American Mathematical Society</rights><rights>2016 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-efd61f0f785e911951c75fef1fd0bf442fa043a8338c29b5a0f82c45396eb1683</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/tran/2016-368-09/S0002-9947-2015-06651-3/S0002-9947-2015-06651-3.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/tran/2016-368-09/S0002-9947-2015-06651-3/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,315,781,785,804,833,23329,23333,27929,27930,58022,58026,58255,58259,77841,77843,77851,77853</link.rule.ids></links><search><creatorcontrib>Silvestre, Luis</creatorcontrib><creatorcontrib>Vicol, Vlad</creatorcontrib><title>On a transport equation with nonlocal drift</title><title>Transactions of the American Mathematical Society</title><description>In 2005, Córdoba, Córdoba, and Fontelos proved that for some initial data, the following nonlocal-drift variant of the 1D Burgers equation does not have global classical solutions ∂ t θ + u ∂ x θ = 0 , u = H θ , where H is the Hilbert transform. We provide four essentially different proofs of this fact. Moreover, we study possible Hölder regularization effects of this equation and its consequences to the equation with diffusion ∂ t θ + u ∂ x θ + Λ γ θ = 0 , u = H θ , where Λ = (−Δ)1/2, and 1/2 ≤ γ &lt;1. Our results also apply to the model with velocity field u = Λ sHθ, where s ∈ (−1, 1). We conjecture that solutions which arise as limits from vanishing viscosity approximations are bounded in the Hölder class in C (s+1)/2, for all positive time. 2010 Mathematics Subject Classification. Primary 35Q35.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1j01LxDAURYMoWEfBn1BwI0j1pWnSZCmDXzAwG12H1zRhOrTNmETEf29L1Z2rx-Wdc-EScknhloKCuxRwFILTI5JRkLIQksMxyQCgLJSq6lNyFuN-ilBJkZGb7ZhjPkvx4EPK7fsHps6P-WeXdvnox94b7PM2dC6dkxOHfbQXP3dF3h4fXtfPxWb79LK-3xTIGKTCulZQB66W3CpKFaem5s466lpoXFWVDqFiKBmTplQNR3CyNBVnStiGCslW5HrpNcHHGKzTh9ANGL40BT2P1L8jJxQWdB-TD3_c_MfBhgHTLnrTaSakVlpQriblalFwiP8XfwOGw2FV</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Silvestre, Luis</creator><creator>Vicol, Vlad</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160901</creationdate><title>On a transport equation with nonlocal drift</title><author>Silvestre, Luis ; Vicol, Vlad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-efd61f0f785e911951c75fef1fd0bf442fa043a8338c29b5a0f82c45396eb1683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silvestre, Luis</creatorcontrib><creatorcontrib>Vicol, Vlad</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silvestre, Luis</au><au>Vicol, Vlad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a transport equation with nonlocal drift</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2016-09-01</date><risdate>2016</risdate><volume>368</volume><issue>9</issue><spage>6159</spage><epage>6188</epage><pages>6159-6188</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>In 2005, Córdoba, Córdoba, and Fontelos proved that for some initial data, the following nonlocal-drift variant of the 1D Burgers equation does not have global classical solutions ∂ t θ + u ∂ x θ = 0 , u = H θ , where H is the Hilbert transform. We provide four essentially different proofs of this fact. Moreover, we study possible Hölder regularization effects of this equation and its consequences to the equation with diffusion ∂ t θ + u ∂ x θ + Λ γ θ = 0 , u = H θ , where Λ = (−Δ)1/2, and 1/2 ≤ γ &lt;1. Our results also apply to the model with velocity field u = Λ sHθ, where s ∈ (−1, 1). We conjecture that solutions which arise as limits from vanishing viscosity approximations are bounded in the Hölder class in C (s+1)/2, for all positive time. 2010 Mathematics Subject Classification. Primary 35Q35.</abstract><pub>American Mathematical Society</pub><doi>10.1090/tran6651</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2016-09, Vol.368 (9), p.6159-6188
issn 0002-9947
1088-6850
language eng
recordid cdi_crossref_primary_10_1090_tran6651
source American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; American Mathematical Society Publications
title On a transport equation with nonlocal drift
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T06%3A01%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20transport%20equation%20with%20nonlocal%20drift&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Silvestre,%20Luis&rft.date=2016-09-01&rft.volume=368&rft.issue=9&rft.spage=6159&rft.epage=6188&rft.pages=6159-6188&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran6651&rft_dat=%3Cjstor_cross%3Etranamermathsoci.368.9.6159%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=tranamermathsoci.368.9.6159&rfr_iscdi=true