Heat equation in a multidimensional domain with a general stochastic measure
Stochastic heat equation on [0,T]\times \mathbb{R}^d, d\ge 1, driven by a general stochastic measure \mu (t), t\in [0,T], is studied in this paper. The existence, uniqueness, and Hölder regularity of a mild solution are proved.
Gespeichert in:
Veröffentlicht in: | Theory of probability and mathematical statistics 2016, Vol.93, p.1-17 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Theory of probability and mathematical statistics |
container_volume | 93 |
creator | Bodnarchuk, I. M. Shevchenko, G. M. |
description | Stochastic heat equation on [0,T]\times \mathbb{R}^d, d\ge 1, driven by a general stochastic measure \mu (t), t\in [0,T], is studied in this paper. The existence, uniqueness, and Hölder regularity of a mild solution are proved. |
doi_str_mv | 10.1090/tpms/991 |
format | Article |
fullrecord | <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tpms_991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tpms_991</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2041-8eb26b9595166845853d42277cd5c8c7c77e6537c89858b9b8b1f87585aa83113</originalsourceid><addsrcrecordid>eNp1kEtLxDAURoMoWEfBn1Bw46ZOHs1rKYPOCAU3ui63aepEmnZMUsR_b4Zx6-rC-Q53cRC6JfiBYI3X6eDjWmtyhgrCa1lJJtg5KjDWdaUxxpfoKsZPjKkUghao2VlIpf1aILl5Kt1UQumXMbneeTvFzGAs-9lDXr5d2uf5w042ZBrTbPYQkzOltxCXYK_RxQBjtDd_d4Xen5_eNruqed2-bB6bCiiuSaVsR0WnueZECFVzxVlfUyql6blRRhopreBMGqUVV53uVEcGJbMHoBghbIXuT39NmGMMdmgPwXkIPy3B7bFCe6zQ5gpZvTupkMG_1i8-s1uA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heat equation in a multidimensional domain with a general stochastic measure</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>American Mathematical Society Publications</source><creator>Bodnarchuk, I. M. ; Shevchenko, G. M.</creator><creatorcontrib>Bodnarchuk, I. M. ; Shevchenko, G. M.</creatorcontrib><description>Stochastic heat equation on [0,T]\times \mathbb{R}^d, d\ge 1, driven by a general stochastic measure \mu (t), t\in [0,T], is studied in this paper. The existence, uniqueness, and Hölder regularity of a mild solution are proved.</description><identifier>ISSN: 0094-9000</identifier><identifier>EISSN: 1547-7363</identifier><identifier>DOI: 10.1090/tpms/991</identifier><language>eng</language><ispartof>Theory of probability and mathematical statistics, 2016, Vol.93, p.1-17</ispartof><rights>Copyright 2017, American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a2041-8eb26b9595166845853d42277cd5c8c7c77e6537c89858b9b8b1f87585aa83113</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/tpms/2016-93-00/S0094-9000-2017-00991-2/S0094-9000-2017-00991-2.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/tpms/2016-93-00/S0094-9000-2017-00991-2/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,778,782,4012,23307,23311,27906,27907,27908,77587,77589,77597,77599</link.rule.ids></links><search><creatorcontrib>Bodnarchuk, I. M.</creatorcontrib><creatorcontrib>Shevchenko, G. M.</creatorcontrib><title>Heat equation in a multidimensional domain with a general stochastic measure</title><title>Theory of probability and mathematical statistics</title><description>Stochastic heat equation on [0,T]\times \mathbb{R}^d, d\ge 1, driven by a general stochastic measure \mu (t), t\in [0,T], is studied in this paper. The existence, uniqueness, and Hölder regularity of a mild solution are proved.</description><issn>0094-9000</issn><issn>1547-7363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAURoMoWEfBn1Bw46ZOHs1rKYPOCAU3ui63aepEmnZMUsR_b4Zx6-rC-Q53cRC6JfiBYI3X6eDjWmtyhgrCa1lJJtg5KjDWdaUxxpfoKsZPjKkUghao2VlIpf1aILl5Kt1UQumXMbneeTvFzGAs-9lDXr5d2uf5w042ZBrTbPYQkzOltxCXYK_RxQBjtDd_d4Xen5_eNruqed2-bB6bCiiuSaVsR0WnueZECFVzxVlfUyql6blRRhopreBMGqUVV53uVEcGJbMHoBghbIXuT39NmGMMdmgPwXkIPy3B7bFCe6zQ5gpZvTupkMG_1i8-s1uA</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Bodnarchuk, I. M.</creator><creator>Shevchenko, G. M.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2016</creationdate><title>Heat equation in a multidimensional domain with a general stochastic measure</title><author>Bodnarchuk, I. M. ; Shevchenko, G. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2041-8eb26b9595166845853d42277cd5c8c7c77e6537c89858b9b8b1f87585aa83113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bodnarchuk, I. M.</creatorcontrib><creatorcontrib>Shevchenko, G. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Theory of probability and mathematical statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bodnarchuk, I. M.</au><au>Shevchenko, G. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat equation in a multidimensional domain with a general stochastic measure</atitle><jtitle>Theory of probability and mathematical statistics</jtitle><date>2016</date><risdate>2016</risdate><volume>93</volume><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0094-9000</issn><eissn>1547-7363</eissn><abstract>Stochastic heat equation on [0,T]\times \mathbb{R}^d, d\ge 1, driven by a general stochastic measure \mu (t), t\in [0,T], is studied in this paper. The existence, uniqueness, and Hölder regularity of a mild solution are proved.</abstract><doi>10.1090/tpms/991</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-9000 |
ispartof | Theory of probability and mathematical statistics, 2016, Vol.93, p.1-17 |
issn | 0094-9000 1547-7363 |
language | eng |
recordid | cdi_crossref_primary_10_1090_tpms_991 |
source | American Mathematical Society Publications (Freely Accessible); American Mathematical Society Publications |
title | Heat equation in a multidimensional domain with a general stochastic measure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A57%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20equation%20in%20a%20multidimensional%20domain%20with%20a%20general%20stochastic%20measure&rft.jtitle=Theory%20of%20probability%20and%20mathematical%20statistics&rft.au=Bodnarchuk,%20I.%20M.&rft.date=2016&rft.volume=93&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0094-9000&rft.eissn=1547-7363&rft_id=info:doi/10.1090/tpms/991&rft_dat=%3Cams_cross%3E10_1090_tpms_991%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |