Stochastic representation and path properties of a fractional Cox–Ingersoll–Ross process

We consider the Cox–Ingersoll–Ross process that satisfies the stochastic differential equation dXt=aXtdt+σXtdBtHdX_t = aX_t dt+\sigma \sqrt {X_t} dB^H_t driven by a fractional Brownian motion BtHB^H_t with the Hurst index exceeding 23\frac {2}{3}, where ∫0tXsdBsH\int _0^t\sqrt {X_s} dB^H_s is the pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory of probability and mathematical statistics 2019-02, Vol.97, p.167-182
Hauptverfasser: Mishura, Yu. S., Piterbarg, V. I., Ralchenko, K. V., Yurchenko-Tytarenko, A. Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 182
container_issue
container_start_page 167
container_title Theory of probability and mathematical statistics
container_volume 97
creator Mishura, Yu. S.
Piterbarg, V. I.
Ralchenko, K. V.
Yurchenko-Tytarenko, A. Yu
description We consider the Cox–Ingersoll–Ross process that satisfies the stochastic differential equation dXt=aXtdt+σXtdBtHdX_t = aX_t dt+\sigma \sqrt {X_t} dB^H_t driven by a fractional Brownian motion BtHB^H_t with the Hurst index exceeding 23\frac {2}{3}, where ∫0tXsdBsH\int _0^t\sqrt {X_s} dB^H_s is the pathwise integral defined as the limit of the corresponding Riemann–Stieltjes sums. We show that the Cox–Ingersoll–Ross process coincides with the square of the fractional Ornstein–Uhlenbeck process up to the first return to zero. Based on this observation, we consider the square of the fractional Ornstein–Uhlenbeck process with an arbitrary Hurst index and prove that it satisfies the above stochastic differential equation up to the first return to zero if ∫0tXsdBsH\int _0^t\sqrt {X_s} dB^H_s is understood as the pathwise Stratonovich integral. Then a natural question arises about the first visit to zero of the fractional Cox–Ingersoll–Ross process which coincides with the first visit to zero of the fractional Ornstein–Uhlenbeck process. Since the latter process is Gaussian, we use the bounds for the distributions of Gaussian processes to prove that the probability of a visit to zero over a finite time equals 1 if a>0a>0. Otherwise this probability is positive. We provide an upper bound for this probability.
doi_str_mv 10.1090/tpms/1055
format Article
fullrecord <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tpms_1055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tpms_1055</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2085-22977cd2630a3c7a178f3bf41acfa323074d65399da0ae1eb75fa4d09d364d2a0</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoWEcXvkEWblzUOUnaZrKUwcvAgOBlJ5QzuTiVThOSLHTnO_iGPokt49bVORy-8__wEXLO4IqBgnkOuzRnUNcHpGB1JUspGnFICgBVlQoAjslJSu8AXDYNL8jrU_Z6iyl3mkYbok12yJg7P1AcDA2YtzREH2zMnU3UO4rURdQTgT1d-o-fr-_V8GZj8n0_7o8-pelD25ROyZHDPtmzvzkjL7c3z8v7cv1wt1per0vksKhLzpWU2vBGAAotkcmFExtXMdQOBRcgK9PUQimDgJbZjawdVgaUEU1lOMKMXO5zdRzbo3VtiN0O42fLoJ20tJOWdtIyshd7FsfL_9gv1uVlnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stochastic representation and path properties of a fractional Cox–Ingersoll–Ross process</title><creator>Mishura, Yu. S. ; Piterbarg, V. I. ; Ralchenko, K. V. ; Yurchenko-Tytarenko, A. Yu</creator><creatorcontrib>Mishura, Yu. S. ; Piterbarg, V. I. ; Ralchenko, K. V. ; Yurchenko-Tytarenko, A. Yu</creatorcontrib><description>We consider the Cox–Ingersoll–Ross process that satisfies the stochastic differential equation dXt=aXtdt+σXtdBtHdX_t = aX_t dt+\sigma \sqrt {X_t} dB^H_t driven by a fractional Brownian motion BtHB^H_t with the Hurst index exceeding 23\frac {2}{3}, where ∫0tXsdBsH\int _0^t\sqrt {X_s} dB^H_s is the pathwise integral defined as the limit of the corresponding Riemann–Stieltjes sums. We show that the Cox–Ingersoll–Ross process coincides with the square of the fractional Ornstein–Uhlenbeck process up to the first return to zero. Based on this observation, we consider the square of the fractional Ornstein–Uhlenbeck process with an arbitrary Hurst index and prove that it satisfies the above stochastic differential equation up to the first return to zero if ∫0tXsdBsH\int _0^t\sqrt {X_s} dB^H_s is understood as the pathwise Stratonovich integral. Then a natural question arises about the first visit to zero of the fractional Cox–Ingersoll–Ross process which coincides with the first visit to zero of the fractional Ornstein–Uhlenbeck process. Since the latter process is Gaussian, we use the bounds for the distributions of Gaussian processes to prove that the probability of a visit to zero over a finite time equals 1 if a&gt;0a&gt;0. Otherwise this probability is positive. We provide an upper bound for this probability.</description><identifier>ISSN: 0094-9000</identifier><identifier>EISSN: 1547-7363</identifier><identifier>DOI: 10.1090/tpms/1055</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Research article</subject><ispartof>Theory of probability and mathematical statistics, 2019-02, Vol.97, p.167-182</ispartof><rights>Copyright 2019 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a2085-22977cd2630a3c7a178f3bf41acfa323074d65399da0ae1eb75fa4d09d364d2a0</citedby></display><links><openurl>$$Topenurl_article</openurl><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776</link.rule.ids></links><search><creatorcontrib>Mishura, Yu. S.</creatorcontrib><creatorcontrib>Piterbarg, V. I.</creatorcontrib><creatorcontrib>Ralchenko, K. V.</creatorcontrib><creatorcontrib>Yurchenko-Tytarenko, A. Yu</creatorcontrib><title>Stochastic representation and path properties of a fractional Cox–Ingersoll–Ross process</title><title>Theory of probability and mathematical statistics</title><addtitle>Theor. Probability and Math. Statist</addtitle><description>We consider the Cox–Ingersoll–Ross process that satisfies the stochastic differential equation dXt=aXtdt+σXtdBtHdX_t = aX_t dt+\sigma \sqrt {X_t} dB^H_t driven by a fractional Brownian motion BtHB^H_t with the Hurst index exceeding 23\frac {2}{3}, where ∫0tXsdBsH\int _0^t\sqrt {X_s} dB^H_s is the pathwise integral defined as the limit of the corresponding Riemann–Stieltjes sums. We show that the Cox–Ingersoll–Ross process coincides with the square of the fractional Ornstein–Uhlenbeck process up to the first return to zero. Based on this observation, we consider the square of the fractional Ornstein–Uhlenbeck process with an arbitrary Hurst index and prove that it satisfies the above stochastic differential equation up to the first return to zero if ∫0tXsdBsH\int _0^t\sqrt {X_s} dB^H_s is understood as the pathwise Stratonovich integral. Then a natural question arises about the first visit to zero of the fractional Cox–Ingersoll–Ross process which coincides with the first visit to zero of the fractional Ornstein–Uhlenbeck process. Since the latter process is Gaussian, we use the bounds for the distributions of Gaussian processes to prove that the probability of a visit to zero over a finite time equals 1 if a&gt;0a&gt;0. Otherwise this probability is positive. We provide an upper bound for this probability.</description><subject>Research article</subject><issn>0094-9000</issn><issn>1547-7363</issn><fulltext>false</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKxDAUhoMoWEcXvkEWblzUOUnaZrKUwcvAgOBlJ5QzuTiVThOSLHTnO_iGPokt49bVORy-8__wEXLO4IqBgnkOuzRnUNcHpGB1JUspGnFICgBVlQoAjslJSu8AXDYNL8jrU_Z6iyl3mkYbok12yJg7P1AcDA2YtzREH2zMnU3UO4rURdQTgT1d-o-fr-_V8GZj8n0_7o8-pelD25ROyZHDPtmzvzkjL7c3z8v7cv1wt1per0vksKhLzpWU2vBGAAotkcmFExtXMdQOBRcgK9PUQimDgJbZjawdVgaUEU1lOMKMXO5zdRzbo3VtiN0O42fLoJ20tJOWdtIyshd7FsfL_9gv1uVlnA</recordid><startdate>20190221</startdate><enddate>20190221</enddate><creator>Mishura, Yu. S.</creator><creator>Piterbarg, V. I.</creator><creator>Ralchenko, K. V.</creator><creator>Yurchenko-Tytarenko, A. Yu</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190221</creationdate><title>Stochastic representation and path properties of a fractional Cox–Ingersoll–Ross process</title><author>Mishura, Yu. S. ; Piterbarg, V. I. ; Ralchenko, K. V. ; Yurchenko-Tytarenko, A. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2085-22977cd2630a3c7a178f3bf41acfa323074d65399da0ae1eb75fa4d09d364d2a0</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Research article</topic><toplevel>peer_reviewed</toplevel><creatorcontrib>Mishura, Yu. S.</creatorcontrib><creatorcontrib>Piterbarg, V. I.</creatorcontrib><creatorcontrib>Ralchenko, K. V.</creatorcontrib><creatorcontrib>Yurchenko-Tytarenko, A. Yu</creatorcontrib><collection>CrossRef</collection><jtitle>Theory of probability and mathematical statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>no_fulltext</fulltext></delivery><addata><au>Mishura, Yu. S.</au><au>Piterbarg, V. I.</au><au>Ralchenko, K. V.</au><au>Yurchenko-Tytarenko, A. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic representation and path properties of a fractional Cox–Ingersoll–Ross process</atitle><jtitle>Theory of probability and mathematical statistics</jtitle><stitle>Theor. Probability and Math. Statist</stitle><date>2019-02-21</date><risdate>2019</risdate><volume>97</volume><spage>167</spage><epage>182</epage><pages>167-182</pages><issn>0094-9000</issn><eissn>1547-7363</eissn><abstract>We consider the Cox–Ingersoll–Ross process that satisfies the stochastic differential equation dXt=aXtdt+σXtdBtHdX_t = aX_t dt+\sigma \sqrt {X_t} dB^H_t driven by a fractional Brownian motion BtHB^H_t with the Hurst index exceeding 23\frac {2}{3}, where ∫0tXsdBsH\int _0^t\sqrt {X_s} dB^H_s is the pathwise integral defined as the limit of the corresponding Riemann–Stieltjes sums. We show that the Cox–Ingersoll–Ross process coincides with the square of the fractional Ornstein–Uhlenbeck process up to the first return to zero. Based on this observation, we consider the square of the fractional Ornstein–Uhlenbeck process with an arbitrary Hurst index and prove that it satisfies the above stochastic differential equation up to the first return to zero if ∫0tXsdBsH\int _0^t\sqrt {X_s} dB^H_s is understood as the pathwise Stratonovich integral. Then a natural question arises about the first visit to zero of the fractional Cox–Ingersoll–Ross process which coincides with the first visit to zero of the fractional Ornstein–Uhlenbeck process. Since the latter process is Gaussian, we use the bounds for the distributions of Gaussian processes to prove that the probability of a visit to zero over a finite time equals 1 if a&gt;0a&gt;0. Otherwise this probability is positive. We provide an upper bound for this probability.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/tpms/1055</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext no_fulltext
identifier ISSN: 0094-9000
ispartof Theory of probability and mathematical statistics, 2019-02, Vol.97, p.167-182
issn 0094-9000
1547-7363
language eng
recordid cdi_crossref_primary_10_1090_tpms_1055
source
subjects Research article
title Stochastic representation and path properties of a fractional Cox–Ingersoll–Ross process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T22%3A05%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20representation%20and%20path%20properties%20of%20a%20fractional%20Cox%E2%80%93Ingersoll%E2%80%93Ross%20process&rft.jtitle=Theory%20of%20probability%20and%20mathematical%20statistics&rft.au=Mishura,%20Yu.%20S.&rft.date=2019-02-21&rft.volume=97&rft.spage=167&rft.epage=182&rft.pages=167-182&rft.issn=0094-9000&rft.eissn=1547-7363&rft_id=info:doi/10.1090/tpms/1055&rft_dat=%3Cams_cross%3E10_1090_tpms_1055%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true