Wave equation with a stable noise

The three-dimensional wave equation is studied in the paper. The right hand side of the equation has a symmetric α\alpha-stable distribution. Two cases are considered, namely the cases where the perturbation is a (1) “white noise” and (2) “colored noise”. It is proved for both cases that a candidate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory of probability and mathematical statistics 2018-10, Vol.96, p.145-157
Hauptverfasser: Pryhara, L. I., Shevchenko, G. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 157
container_issue
container_start_page 145
container_title Theory of probability and mathematical statistics
container_volume 96
creator Pryhara, L. I.
Shevchenko, G. M.
description The three-dimensional wave equation is studied in the paper. The right hand side of the equation has a symmetric α\alpha-stable distribution. Two cases are considered, namely the cases where the perturbation is a (1) “white noise” and (2) “colored noise”. It is proved for both cases that a candidate for a solution (a function represented by the Kirchhoff formula) is a generalized solution.
doi_str_mv 10.1090/tpms/1040
format Article
fullrecord <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tpms_1040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tpms_1040</sourcerecordid><originalsourceid>FETCH-LOGICAL-a173t-6fb36734107deeeab08df3672f734bdb94d17fe3c48fd359344d3f905700d3923</originalsourceid><addsrcrecordid>eNp1j81KAzEURoMoOFYXvkEENy7S3szNJM1Sin9Q6EZxGZLmBkfaTp1Exbd3hrp19cHh8MFh7FLCVIKFWdlv80yCgiNWyUYZYVDjMasArBIWAE7ZWc7vALXRuq7Y1av_Ik4fn7603Y5_t-WNe56LDxviu67NdM5Okt9kuvjbCXu5v3tePIrl6uFpcbsUXhosQqeA2qCSYCIR-QDzmAZSpwGGGKyK0iTCtZqniI1FpSImC40BiGhrnLCbw--673LuKbl93259_-MkuLHNjW1ubBvc64PrB_K_9gtUCkyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Wave equation with a stable noise</title><source>American Mathematical Society Publications</source><source>American Mathematical Society Publications (Freely Accessible)</source><creator>Pryhara, L. I. ; Shevchenko, G. M.</creator><creatorcontrib>Pryhara, L. I. ; Shevchenko, G. M.</creatorcontrib><description>The three-dimensional wave equation is studied in the paper. The right hand side of the equation has a symmetric α\alpha-stable distribution. Two cases are considered, namely the cases where the perturbation is a (1) “white noise” and (2) “colored noise”. It is proved for both cases that a candidate for a solution (a function represented by the Kirchhoff formula) is a generalized solution.</description><identifier>ISSN: 0094-9000</identifier><identifier>EISSN: 1547-7363</identifier><identifier>DOI: 10.1090/tpms/1040</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Research article</subject><ispartof>Theory of probability and mathematical statistics, 2018-10, Vol.96, p.145-157</ispartof><rights>Copyright 2018 American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a173t-6fb36734107deeeab08df3672f734bdb94d17fe3c48fd359344d3f905700d3923</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/tpms/2018-96-00/S0094-9000-2018-01040-8/S0094-9000-2018-01040-8.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/tpms/2018-96-00/S0094-9000-2018-01040-8/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,776,780,23303,23307,27901,27902,77579,77581,77589,77591</link.rule.ids></links><search><creatorcontrib>Pryhara, L. I.</creatorcontrib><creatorcontrib>Shevchenko, G. M.</creatorcontrib><title>Wave equation with a stable noise</title><title>Theory of probability and mathematical statistics</title><addtitle>Theor. Probability and Math. Statist</addtitle><description>The three-dimensional wave equation is studied in the paper. The right hand side of the equation has a symmetric α\alpha-stable distribution. Two cases are considered, namely the cases where the perturbation is a (1) “white noise” and (2) “colored noise”. It is proved for both cases that a candidate for a solution (a function represented by the Kirchhoff formula) is a generalized solution.</description><subject>Research article</subject><issn>0094-9000</issn><issn>1547-7363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1j81KAzEURoMoOFYXvkEENy7S3szNJM1Sin9Q6EZxGZLmBkfaTp1Exbd3hrp19cHh8MFh7FLCVIKFWdlv80yCgiNWyUYZYVDjMasArBIWAE7ZWc7vALXRuq7Y1av_Ik4fn7603Y5_t-WNe56LDxviu67NdM5Okt9kuvjbCXu5v3tePIrl6uFpcbsUXhosQqeA2qCSYCIR-QDzmAZSpwGGGKyK0iTCtZqniI1FpSImC40BiGhrnLCbw--673LuKbl93259_-MkuLHNjW1ubBvc64PrB_K_9gtUCkyQ</recordid><startdate>20181005</startdate><enddate>20181005</enddate><creator>Pryhara, L. I.</creator><creator>Shevchenko, G. M.</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181005</creationdate><title>Wave equation with a stable noise</title><author>Pryhara, L. I. ; Shevchenko, G. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a173t-6fb36734107deeeab08df3672f734bdb94d17fe3c48fd359344d3f905700d3923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pryhara, L. I.</creatorcontrib><creatorcontrib>Shevchenko, G. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Theory of probability and mathematical statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pryhara, L. I.</au><au>Shevchenko, G. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wave equation with a stable noise</atitle><jtitle>Theory of probability and mathematical statistics</jtitle><stitle>Theor. Probability and Math. Statist</stitle><date>2018-10-05</date><risdate>2018</risdate><volume>96</volume><spage>145</spage><epage>157</epage><pages>145-157</pages><issn>0094-9000</issn><eissn>1547-7363</eissn><abstract>The three-dimensional wave equation is studied in the paper. The right hand side of the equation has a symmetric α\alpha-stable distribution. Two cases are considered, namely the cases where the perturbation is a (1) “white noise” and (2) “colored noise”. It is proved for both cases that a candidate for a solution (a function represented by the Kirchhoff formula) is a generalized solution.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/tpms/1040</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-9000
ispartof Theory of probability and mathematical statistics, 2018-10, Vol.96, p.145-157
issn 0094-9000
1547-7363
language eng
recordid cdi_crossref_primary_10_1090_tpms_1040
source American Mathematical Society Publications; American Mathematical Society Publications (Freely Accessible)
subjects Research article
title Wave equation with a stable noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T10%3A24%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wave%20equation%20with%20a%20stable%20noise&rft.jtitle=Theory%20of%20probability%20and%20mathematical%20statistics&rft.au=Pryhara,%20L.%20I.&rft.date=2018-10-05&rft.volume=96&rft.spage=145&rft.epage=157&rft.pages=145-157&rft.issn=0094-9000&rft.eissn=1547-7363&rft_id=info:doi/10.1090/tpms/1040&rft_dat=%3Cams_cross%3E10_1090_tpms_1040%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true