Multipliers in Bessel potential spaces with smoothness indices of different sign
The subject of the present paper is the study of multipliers from the Bessel potential space H^s_p(\mathbb{R}^n) to the Bessel potential space H^{-t}_q(\mathbb{R}^n) for the case in which the smoothness indices of these spaces have different signs, i.e., s, t \geq 0. The space of such multipliers co...
Gespeichert in:
Veröffentlicht in: | St. Petersburg mathematical journal 2019-01, Vol.30 (2), p.203-218 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 218 |
---|---|
container_issue | 2 |
container_start_page | 203 |
container_title | St. Petersburg mathematical journal |
container_volume | 30 |
creator | Belyaev, A. A. Shkalikov, A. A. |
description | The subject of the present paper is the study of multipliers from the Bessel potential space H^s_p(\mathbb{R}^n) to the Bessel potential space H^{-t}_q(\mathbb{R}^n) for the case in which the smoothness indices of these spaces have different signs, i.e., s, t \geq 0. The space of such multipliers consists of distributions u such that for all \varphi \in H^s_p(\mathbb{R}^n) the product \varphi \cdot u is well defined and belongs to H^{-t}_q(\mathbb{R}^n). It turns out that these multiplier spaces can be described explicitly in the case where p \leq q and one of the following conditions is fulfilled: \displaystyle s \geq t \geq 0, \ s > n/p \ \displaystyle \text { or } \ \ t \geq s \geq 0, \ t > n/q' \quad (\text {where } \ 1/q +1/q' = 1). Namely, in this case we have \displaystyle M[H^s_p(\mathbb{R}^n) \to H^{-t}_{q}(\mathbb{R}^n)] = H^{-t}_{q, \mathrm {unif}}(\mathbb{R}^n) \cap H^{-s}_{p', \mathrm {unif}}(\mathbb{R}^n), where H^\gamma _{r, \mathrm {unif}}(\mathbb{R}^n) is the space of uniformly localized Bessel potentials. For the important case where s = t < n/\max (p,q'), we prove the two-sided embeddings \displaystyle H^{-s}_{r_1, \mathrm {unif}}(\mathbb{R}^n) \subset M[H^s_p(\mathb... ...\to H^{-s}_q(\mathbb{R}^n)] \subset H^{-s}_{r_2, \mathrm {unif}}(\mathbb{R}^n), where r_2 = \max (p', q), r_1 =[s/n-(1/p -1/q)]^{-1}. |
doi_str_mv | 10.1090/spmj/1538 |
format | Article |
fullrecord | <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_spmj_1538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_spmj_1538</sourcerecordid><originalsourceid>FETCH-LOGICAL-a258t-7f27927e7cb06a495a1a12b6005e5c25393d065c88c1acf9eb5897f5ecfb39703</originalsourceid><addsrcrecordid>eNp90D1LBDEQBuAgCp6nhf8ghY3FepPkstmUevgFJ1povWSziZdjv8hExH9vlrO2mpfhYRheQi4Z3DDQsMKp36-YFNURWTC5VoUSih3nDCUrADg_JWeI-5ykAL4gby9fXQpTF1xEGgZ65xBdR6cxuSEF01GcjHVIv0PaUezHMe2GTDJtw7wfPW2D9y5mTjF8DufkxJsO3cXfXJKPh_v3zVOxfX183txuC8NllQrludJcOWUbKM1aS8MM400JIJ20-TktWiilrSrLjPXaNbLSyktnfSO0ArEk14e7No6I0fl6iqE38admUM9V1HMV9VxFtlcHa3r8h_0Cry5e7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multipliers in Bessel potential spaces with smoothness indices of different sign</title><source>American Mathematical Society Publications (Freely Accessible)</source><creator>Belyaev, A. A. ; Shkalikov, A. A.</creator><creatorcontrib>Belyaev, A. A. ; Shkalikov, A. A.</creatorcontrib><description><![CDATA[The subject of the present paper is the study of multipliers from the Bessel potential space H^s_p(\mathbb{R}^n) to the Bessel potential space H^{-t}_q(\mathbb{R}^n) for the case in which the smoothness indices of these spaces have different signs, i.e., s, t \geq 0. The space of such multipliers consists of distributions u such that for all \varphi \in H^s_p(\mathbb{R}^n) the product \varphi \cdot u is well defined and belongs to H^{-t}_q(\mathbb{R}^n). It turns out that these multiplier spaces can be described explicitly in the case where p \leq q and one of the following conditions is fulfilled: <TD NOWRAP ALIGN="CENTER">\displaystyle s \geq t \geq 0, \ s > n/p \ \displaystyle \text { or } \ \ t \geq s \geq 0, \ t > n/q' \quad (\text {where } \ 1/q +1/q' = 1). <TD NOWRAP CLASS="eqno" WIDTH="10" ALIGN="RIGHT"> Namely, in this case we have <TD NOWRAP ALIGN="CENTER">\displaystyle M[H^s_p(\mathbb{R}^n) \to H^{-t}_{q}(\mathbb{R}^n)] = H^{-t}_{q, \mathrm {unif}}(\mathbb{R}^n) \cap H^{-s}_{p', \mathrm {unif}}(\mathbb{R}^n), <TD NOWRAP CLASS="eqno" WIDTH="10" ALIGN="RIGHT"> where H^\gamma _{r, \mathrm {unif}}(\mathbb{R}^n) is the space of uniformly localized Bessel potentials. For the important case where s = t < n/\max (p,q'), we prove the two-sided embeddings <TD NOWRAP ALIGN="CENTER">\displaystyle H^{-s}_{r_1, \mathrm {unif}}(\mathbb{R}^n) \subset M[H^s_p(\mathb... ...\to H^{-s}_q(\mathbb{R}^n)] \subset H^{-s}_{r_2, \mathrm {unif}}(\mathbb{R}^n), <TD NOWRAP CLASS="eqno" WIDTH="10" ALIGN="RIGHT"> where r_2 = \max (p', q), r_1 =[s/n-(1/p -1/q)]^{-1}.]]></description><identifier>ISSN: 1061-0022</identifier><identifier>EISSN: 1547-7371</identifier><identifier>DOI: 10.1090/spmj/1538</identifier><language>eng</language><ispartof>St. Petersburg mathematical journal, 2019-01, Vol.30 (2), p.203-218</ispartof><rights>Copyright 2019, American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a258t-7f27927e7cb06a495a1a12b6005e5c25393d065c88c1acf9eb5897f5ecfb39703</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/spmj/2019-30-02/S1061-0022-2019-01538-2/S1061-0022-2019-01538-2.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/spmj/2019-30-02/S1061-0022-2019-01538-2/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>69,314,780,784,23322,27922,27923,77608,77618</link.rule.ids></links><search><creatorcontrib>Belyaev, A. A.</creatorcontrib><creatorcontrib>Shkalikov, A. A.</creatorcontrib><title>Multipliers in Bessel potential spaces with smoothness indices of different sign</title><title>St. Petersburg mathematical journal</title><description><![CDATA[The subject of the present paper is the study of multipliers from the Bessel potential space H^s_p(\mathbb{R}^n) to the Bessel potential space H^{-t}_q(\mathbb{R}^n) for the case in which the smoothness indices of these spaces have different signs, i.e., s, t \geq 0. The space of such multipliers consists of distributions u such that for all \varphi \in H^s_p(\mathbb{R}^n) the product \varphi \cdot u is well defined and belongs to H^{-t}_q(\mathbb{R}^n). It turns out that these multiplier spaces can be described explicitly in the case where p \leq q and one of the following conditions is fulfilled: <TD NOWRAP ALIGN="CENTER">\displaystyle s \geq t \geq 0, \ s > n/p \ \displaystyle \text { or } \ \ t \geq s \geq 0, \ t > n/q' \quad (\text {where } \ 1/q +1/q' = 1). <TD NOWRAP CLASS="eqno" WIDTH="10" ALIGN="RIGHT"> Namely, in this case we have <TD NOWRAP ALIGN="CENTER">\displaystyle M[H^s_p(\mathbb{R}^n) \to H^{-t}_{q}(\mathbb{R}^n)] = H^{-t}_{q, \mathrm {unif}}(\mathbb{R}^n) \cap H^{-s}_{p', \mathrm {unif}}(\mathbb{R}^n), <TD NOWRAP CLASS="eqno" WIDTH="10" ALIGN="RIGHT"> where H^\gamma _{r, \mathrm {unif}}(\mathbb{R}^n) is the space of uniformly localized Bessel potentials. For the important case where s = t < n/\max (p,q'), we prove the two-sided embeddings <TD NOWRAP ALIGN="CENTER">\displaystyle H^{-s}_{r_1, \mathrm {unif}}(\mathbb{R}^n) \subset M[H^s_p(\mathb... ...\to H^{-s}_q(\mathbb{R}^n)] \subset H^{-s}_{r_2, \mathrm {unif}}(\mathbb{R}^n), <TD NOWRAP CLASS="eqno" WIDTH="10" ALIGN="RIGHT"> where r_2 = \max (p', q), r_1 =[s/n-(1/p -1/q)]^{-1}.]]></description><issn>1061-0022</issn><issn>1547-7371</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90D1LBDEQBuAgCp6nhf8ghY3FepPkstmUevgFJ1povWSziZdjv8hExH9vlrO2mpfhYRheQi4Z3DDQsMKp36-YFNURWTC5VoUSih3nDCUrADg_JWeI-5ykAL4gby9fXQpTF1xEGgZ65xBdR6cxuSEF01GcjHVIv0PaUezHMe2GTDJtw7wfPW2D9y5mTjF8DufkxJsO3cXfXJKPh_v3zVOxfX183txuC8NllQrludJcOWUbKM1aS8MM400JIJ20-TktWiilrSrLjPXaNbLSyktnfSO0ArEk14e7No6I0fl6iqE38admUM9V1HMV9VxFtlcHa3r8h_0Cry5e7Q</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Belyaev, A. A.</creator><creator>Shkalikov, A. A.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190101</creationdate><title>Multipliers in Bessel potential spaces with smoothness indices of different sign</title><author>Belyaev, A. A. ; Shkalikov, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a258t-7f27927e7cb06a495a1a12b6005e5c25393d065c88c1acf9eb5897f5ecfb39703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belyaev, A. A.</creatorcontrib><creatorcontrib>Shkalikov, A. A.</creatorcontrib><collection>CrossRef</collection><jtitle>St. Petersburg mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belyaev, A. A.</au><au>Shkalikov, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multipliers in Bessel potential spaces with smoothness indices of different sign</atitle><jtitle>St. Petersburg mathematical journal</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>30</volume><issue>2</issue><spage>203</spage><epage>218</epage><pages>203-218</pages><issn>1061-0022</issn><eissn>1547-7371</eissn><abstract><![CDATA[The subject of the present paper is the study of multipliers from the Bessel potential space H^s_p(\mathbb{R}^n) to the Bessel potential space H^{-t}_q(\mathbb{R}^n) for the case in which the smoothness indices of these spaces have different signs, i.e., s, t \geq 0. The space of such multipliers consists of distributions u such that for all \varphi \in H^s_p(\mathbb{R}^n) the product \varphi \cdot u is well defined and belongs to H^{-t}_q(\mathbb{R}^n). It turns out that these multiplier spaces can be described explicitly in the case where p \leq q and one of the following conditions is fulfilled: <TD NOWRAP ALIGN="CENTER">\displaystyle s \geq t \geq 0, \ s > n/p \ \displaystyle \text { or } \ \ t \geq s \geq 0, \ t > n/q' \quad (\text {where } \ 1/q +1/q' = 1). <TD NOWRAP CLASS="eqno" WIDTH="10" ALIGN="RIGHT"> Namely, in this case we have <TD NOWRAP ALIGN="CENTER">\displaystyle M[H^s_p(\mathbb{R}^n) \to H^{-t}_{q}(\mathbb{R}^n)] = H^{-t}_{q, \mathrm {unif}}(\mathbb{R}^n) \cap H^{-s}_{p', \mathrm {unif}}(\mathbb{R}^n), <TD NOWRAP CLASS="eqno" WIDTH="10" ALIGN="RIGHT"> where H^\gamma _{r, \mathrm {unif}}(\mathbb{R}^n) is the space of uniformly localized Bessel potentials. For the important case where s = t < n/\max (p,q'), we prove the two-sided embeddings <TD NOWRAP ALIGN="CENTER">\displaystyle H^{-s}_{r_1, \mathrm {unif}}(\mathbb{R}^n) \subset M[H^s_p(\mathb... ...\to H^{-s}_q(\mathbb{R}^n)] \subset H^{-s}_{r_2, \mathrm {unif}}(\mathbb{R}^n), <TD NOWRAP CLASS="eqno" WIDTH="10" ALIGN="RIGHT"> where r_2 = \max (p', q), r_1 =[s/n-(1/p -1/q)]^{-1}.]]></abstract><doi>10.1090/spmj/1538</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-0022 |
ispartof | St. Petersburg mathematical journal, 2019-01, Vol.30 (2), p.203-218 |
issn | 1061-0022 1547-7371 |
language | eng |
recordid | cdi_crossref_primary_10_1090_spmj_1538 |
source | American Mathematical Society Publications (Freely Accessible) |
title | Multipliers in Bessel potential spaces with smoothness indices of different sign |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T10%3A55%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multipliers%20in%20Bessel%20potential%20spaces%20with%20smoothness%20indices%20of%20different%20sign&rft.jtitle=St.%20Petersburg%20mathematical%20journal&rft.au=Belyaev,%20A.%20A.&rft.date=2019-01-01&rft.volume=30&rft.issue=2&rft.spage=203&rft.epage=218&rft.pages=203-218&rft.issn=1061-0022&rft.eissn=1547-7371&rft_id=info:doi/10.1090/spmj/1538&rft_dat=%3Cams_cross%3E10_1090_spmj_1538%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |