ASYMPTOTIC ANALYSIS OF THE BUCKLING OF EXTERNALLY PRESSURIZED CYLINDERS WITH RANDOM IMPERFECTIONS
The buckling of finite circular cylindrical shells with random stress-free initial displacements which are subjected to lateral or hydrostatic pressure is studied using a perturbation scheme developed in an earlier paper [1]. A simple approximate asymptotic expression is obtained for the buckling lo...
Gespeichert in:
Veröffentlicht in: | Quarterly of applied mathematics 1974-01, Vol.31 (4), p.429-442 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 442 |
---|---|
container_issue | 4 |
container_start_page | 429 |
container_title | Quarterly of applied mathematics |
container_volume | 31 |
creator | AMAZIGO, JOHN C. |
description | The buckling of finite circular cylindrical shells with random stress-free initial displacements which are subjected to lateral or hydrostatic pressure is studied using a perturbation scheme developed in an earlier paper [1]. A simple approximate asymptotic expression is obtained for the buckling load for small magnitudes of the imperfection. This result is compared with earlier results obtained for localized imperfections and imperfections in the shape of the linear buckling mode. |
doi_str_mv | 10.1090/qam/99693 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_qam_99693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43636640</jstor_id><sourcerecordid>43636640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-1ae5428d963e7934ab3af10ee40b0680ddd2c6da111ada031103c0ca51784da93</originalsourceid><addsrcrecordid>eNo9kEFLwzAYhoMoOKcHf4CQq4e6L02aNcfaZVuwa0eT4eqlZE0HDse03cV_b-bE08fL-_Dy8SB0T-CJgIDRl92PhOCCXqABiaIwYCyOLtEAgNIg4mJ9jW76fuejb2GAbKKrxdIURqU4yZOs0krjYorNXOLnVfqSqXx2ynJtZOn7rMLLUmq9KtWbnOC08sBElhq_KjPHZZJPigVWi6UspzI1qsj1Lbra2o--vfu7Q7SaSpPOg6yYqTTJgiaM2TEgto1YGDvBaTsWlNkNtVsCbctgAzwG51zYcGcJIdZZ_z4B2kBjIzKOmbOCDtHjebfpDn3ftdv6s3vf2-67JlCf3NTeTf3rxrMPZ3bXHw_dP8gop5wzoD_cD1kp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ASYMPTOTIC ANALYSIS OF THE BUCKLING OF EXTERNALLY PRESSURIZED CYLINDERS WITH RANDOM IMPERFECTIONS</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><creator>AMAZIGO, JOHN C.</creator><creatorcontrib>AMAZIGO, JOHN C.</creatorcontrib><description>The buckling of finite circular cylindrical shells with random stress-free initial displacements which are subjected to lateral or hydrostatic pressure is studied using a perturbation scheme developed in an earlier paper [1]. A simple approximate asymptotic expression is obtained for the buckling load for small magnitudes of the imperfection. This result is compared with earlier results obtained for localized imperfections and imperfections in the shape of the linear buckling mode.</description><identifier>ISSN: 0033-569X</identifier><identifier>EISSN: 1552-4485</identifier><identifier>DOI: 10.1090/qam/99693</identifier><language>eng</language><publisher>Brown University</publisher><subject>Boundary conditions ; Buckling ; Cylinders ; Cylindrical shells ; Elastic buckling ; Fourier transformations ; Greens function ; Mathematical expressions ; Spectral energy distribution ; Water pressure</subject><ispartof>Quarterly of applied mathematics, 1974-01, Vol.31 (4), p.429-442</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-1ae5428d963e7934ab3af10ee40b0680ddd2c6da111ada031103c0ca51784da93</citedby><cites>FETCH-LOGICAL-c284t-1ae5428d963e7934ab3af10ee40b0680ddd2c6da111ada031103c0ca51784da93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43636640$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43636640$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57996,58000,58229,58233</link.rule.ids></links><search><creatorcontrib>AMAZIGO, JOHN C.</creatorcontrib><title>ASYMPTOTIC ANALYSIS OF THE BUCKLING OF EXTERNALLY PRESSURIZED CYLINDERS WITH RANDOM IMPERFECTIONS</title><title>Quarterly of applied mathematics</title><description>The buckling of finite circular cylindrical shells with random stress-free initial displacements which are subjected to lateral or hydrostatic pressure is studied using a perturbation scheme developed in an earlier paper [1]. A simple approximate asymptotic expression is obtained for the buckling load for small magnitudes of the imperfection. This result is compared with earlier results obtained for localized imperfections and imperfections in the shape of the linear buckling mode.</description><subject>Boundary conditions</subject><subject>Buckling</subject><subject>Cylinders</subject><subject>Cylindrical shells</subject><subject>Elastic buckling</subject><subject>Fourier transformations</subject><subject>Greens function</subject><subject>Mathematical expressions</subject><subject>Spectral energy distribution</subject><subject>Water pressure</subject><issn>0033-569X</issn><issn>1552-4485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1974</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLwzAYhoMoOKcHf4CQq4e6L02aNcfaZVuwa0eT4eqlZE0HDse03cV_b-bE08fL-_Dy8SB0T-CJgIDRl92PhOCCXqABiaIwYCyOLtEAgNIg4mJ9jW76fuejb2GAbKKrxdIURqU4yZOs0krjYorNXOLnVfqSqXx2ynJtZOn7rMLLUmq9KtWbnOC08sBElhq_KjPHZZJPigVWi6UspzI1qsj1Lbra2o--vfu7Q7SaSpPOg6yYqTTJgiaM2TEgto1YGDvBaTsWlNkNtVsCbctgAzwG51zYcGcJIdZZ_z4B2kBjIzKOmbOCDtHjebfpDn3ftdv6s3vf2-67JlCf3NTeTf3rxrMPZ3bXHw_dP8gop5wzoD_cD1kp</recordid><startdate>19740101</startdate><enddate>19740101</enddate><creator>AMAZIGO, JOHN C.</creator><general>Brown University</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19740101</creationdate><title>ASYMPTOTIC ANALYSIS OF THE BUCKLING OF EXTERNALLY PRESSURIZED CYLINDERS WITH RANDOM IMPERFECTIONS</title><author>AMAZIGO, JOHN C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-1ae5428d963e7934ab3af10ee40b0680ddd2c6da111ada031103c0ca51784da93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1974</creationdate><topic>Boundary conditions</topic><topic>Buckling</topic><topic>Cylinders</topic><topic>Cylindrical shells</topic><topic>Elastic buckling</topic><topic>Fourier transformations</topic><topic>Greens function</topic><topic>Mathematical expressions</topic><topic>Spectral energy distribution</topic><topic>Water pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>AMAZIGO, JOHN C.</creatorcontrib><collection>CrossRef</collection><jtitle>Quarterly of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>AMAZIGO, JOHN C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ASYMPTOTIC ANALYSIS OF THE BUCKLING OF EXTERNALLY PRESSURIZED CYLINDERS WITH RANDOM IMPERFECTIONS</atitle><jtitle>Quarterly of applied mathematics</jtitle><date>1974-01-01</date><risdate>1974</risdate><volume>31</volume><issue>4</issue><spage>429</spage><epage>442</epage><pages>429-442</pages><issn>0033-569X</issn><eissn>1552-4485</eissn><abstract>The buckling of finite circular cylindrical shells with random stress-free initial displacements which are subjected to lateral or hydrostatic pressure is studied using a perturbation scheme developed in an earlier paper [1]. A simple approximate asymptotic expression is obtained for the buckling load for small magnitudes of the imperfection. This result is compared with earlier results obtained for localized imperfections and imperfections in the shape of the linear buckling mode.</abstract><pub>Brown University</pub><doi>10.1090/qam/99693</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-569X |
ispartof | Quarterly of applied mathematics, 1974-01, Vol.31 (4), p.429-442 |
issn | 0033-569X 1552-4485 |
language | eng |
recordid | cdi_crossref_primary_10_1090_qam_99693 |
source | American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; Jstor Complete Legacy; American Mathematical Society Publications |
subjects | Boundary conditions Buckling Cylinders Cylindrical shells Elastic buckling Fourier transformations Greens function Mathematical expressions Spectral energy distribution Water pressure |
title | ASYMPTOTIC ANALYSIS OF THE BUCKLING OF EXTERNALLY PRESSURIZED CYLINDERS WITH RANDOM IMPERFECTIONS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T08%3A41%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ASYMPTOTIC%20ANALYSIS%20OF%20THE%20BUCKLING%20OF%20EXTERNALLY%20PRESSURIZED%20CYLINDERS%20WITH%20RANDOM%20IMPERFECTIONS&rft.jtitle=Quarterly%20of%20applied%20mathematics&rft.au=AMAZIGO,%20JOHN%20C.&rft.date=1974-01-01&rft.volume=31&rft.issue=4&rft.spage=429&rft.epage=442&rft.pages=429-442&rft.issn=0033-569X&rft.eissn=1552-4485&rft_id=info:doi/10.1090/qam/99693&rft_dat=%3Cjstor_cross%3E43636640%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43636640&rfr_iscdi=true |