THE FIGURE-OF-8 LIBRATIONS OF THE GRAVITY GRADIENT PENDULUM AND MODES OF AN ORBITING TETHER
An algorithm is presented for the Hill-Poincaré analytical continuation of the out-of-plane normal mode of the gravity gradient pendulum. The Poincaré-Lindstedt solution employs 17 Poisson series and 24 recursion relations and was evaluated to the 50th order on a CRAY. The trajectories of the nonlin...
Gespeichert in:
Veröffentlicht in: | Quarterly of applied mathematics 1988-12, Vol.46 (4), p.637-663 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 663 |
---|---|
container_issue | 4 |
container_start_page | 637 |
container_title | Quarterly of applied mathematics |
container_volume | 46 |
creator | MELVIN, PETER J. |
description | An algorithm is presented for the Hill-Poincaré analytical continuation of the out-of-plane normal mode of the gravity gradient pendulum. The Poincaré-Lindstedt solution employs 17 Poisson series and 24 recursion relations and was evaluated to the 50th order on a CRAY. The trajectories of the nonlinear normal modes are figures-of-8 on the unit sphere which can be computed nearly to the orbit normal. Numerical integrations indicate further that 1) initial conditions computed at the nadir can be used to generate figures-of-8 over the pole, 2) the single hemispherical figures-of-8 appear to be stable at large amplitudes, and 3) the gravity gradient pendulum has chaotic solutions. A theory is developed for the linear normal modes of a tethered satellite, and the eigenvalues are found for the rosary tether. |
doi_str_mv | 10.1090/qam/973381 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_qam_973381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43637523</jstor_id><sourcerecordid>43637523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-e6abf462fce0a108c957c246ff67ff09ca7b56179ffd35aad412f195a417e3b33</originalsourceid><addsrcrecordid>eNo9kM9LwzAYhoMoOKcX70LOQlzS_GqO3Zp2ga6VmorioWRdAw7HtN3F_97WiqeXj_d5v8MDwC3BDwQrvPhyh4WSlIbkDMwI5wFiLOTnYIYxpYgL9XIJrvp-P5xDi2fgza41TExalRoVCQphZpZlZE2RP8EigWObltGzsa9jxkbnFj7qPK6yagOjPIabIta_aJTDolwaa_IUWj0My2tw4d1H39785RxUibarNcqK1KyiDDVBKE-oFW7rmQh802JHcNgoLpuACe-F9B6rxsktF0Qq73eUO7djJPBEcceIbOmW0jm4n_423bHvu9bXn937wXXfNcH1qKUetNSTlgG-m-B9fzp2_ySjgkoeUPoDqQpXTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>THE FIGURE-OF-8 LIBRATIONS OF THE GRAVITY GRADIENT PENDULUM AND MODES OF AN ORBITING TETHER</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>American Mathematical Society Publications</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>MELVIN, PETER J.</creator><creatorcontrib>MELVIN, PETER J.</creatorcontrib><description>An algorithm is presented for the Hill-Poincaré analytical continuation of the out-of-plane normal mode of the gravity gradient pendulum. The Poincaré-Lindstedt solution employs 17 Poisson series and 24 recursion relations and was evaluated to the 50th order on a CRAY. The trajectories of the nonlinear normal modes are figures-of-8 on the unit sphere which can be computed nearly to the orbit normal. Numerical integrations indicate further that 1) initial conditions computed at the nadir can be used to generate figures-of-8 over the pole, 2) the single hemispherical figures-of-8 appear to be stable at large amplitudes, and 3) the gravity gradient pendulum has chaotic solutions. A theory is developed for the linear normal modes of a tethered satellite, and the eigenvalues are found for the rosary tether.</description><identifier>ISSN: 0033-569X</identifier><identifier>EISSN: 1552-4485</identifier><identifier>DOI: 10.1090/qam/973381</identifier><language>eng</language><publisher>Brown University</publisher><subject>Algorithms ; Center of mass ; Coefficients ; Eigenvalues ; Equations of motion ; Gravity ; Kinetics ; Libration ; Pendulums ; Trajectories</subject><ispartof>Quarterly of applied mathematics, 1988-12, Vol.46 (4), p.637-663</ispartof><rights>1988 Brown University</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-e6abf462fce0a108c957c246ff67ff09ca7b56179ffd35aad412f195a417e3b33</citedby><cites>FETCH-LOGICAL-c287t-e6abf462fce0a108c957c246ff67ff09ca7b56179ffd35aad412f195a417e3b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43637523$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43637523$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>MELVIN, PETER J.</creatorcontrib><title>THE FIGURE-OF-8 LIBRATIONS OF THE GRAVITY GRADIENT PENDULUM AND MODES OF AN ORBITING TETHER</title><title>Quarterly of applied mathematics</title><description>An algorithm is presented for the Hill-Poincaré analytical continuation of the out-of-plane normal mode of the gravity gradient pendulum. The Poincaré-Lindstedt solution employs 17 Poisson series and 24 recursion relations and was evaluated to the 50th order on a CRAY. The trajectories of the nonlinear normal modes are figures-of-8 on the unit sphere which can be computed nearly to the orbit normal. Numerical integrations indicate further that 1) initial conditions computed at the nadir can be used to generate figures-of-8 over the pole, 2) the single hemispherical figures-of-8 appear to be stable at large amplitudes, and 3) the gravity gradient pendulum has chaotic solutions. A theory is developed for the linear normal modes of a tethered satellite, and the eigenvalues are found for the rosary tether.</description><subject>Algorithms</subject><subject>Center of mass</subject><subject>Coefficients</subject><subject>Eigenvalues</subject><subject>Equations of motion</subject><subject>Gravity</subject><subject>Kinetics</subject><subject>Libration</subject><subject>Pendulums</subject><subject>Trajectories</subject><issn>0033-569X</issn><issn>1552-4485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LwzAYhoMoOKcX70LOQlzS_GqO3Zp2ga6VmorioWRdAw7HtN3F_97WiqeXj_d5v8MDwC3BDwQrvPhyh4WSlIbkDMwI5wFiLOTnYIYxpYgL9XIJrvp-P5xDi2fgza41TExalRoVCQphZpZlZE2RP8EigWObltGzsa9jxkbnFj7qPK6yagOjPIabIta_aJTDolwaa_IUWj0My2tw4d1H39785RxUibarNcqK1KyiDDVBKE-oFW7rmQh802JHcNgoLpuACe-F9B6rxsktF0Qq73eUO7djJPBEcceIbOmW0jm4n_423bHvu9bXn937wXXfNcH1qKUetNSTlgG-m-B9fzp2_ySjgkoeUPoDqQpXTw</recordid><startdate>19881201</startdate><enddate>19881201</enddate><creator>MELVIN, PETER J.</creator><general>Brown University</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19881201</creationdate><title>THE FIGURE-OF-8 LIBRATIONS OF THE GRAVITY GRADIENT PENDULUM AND MODES OF AN ORBITING TETHER</title><author>MELVIN, PETER J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-e6abf462fce0a108c957c246ff67ff09ca7b56179ffd35aad412f195a417e3b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Algorithms</topic><topic>Center of mass</topic><topic>Coefficients</topic><topic>Eigenvalues</topic><topic>Equations of motion</topic><topic>Gravity</topic><topic>Kinetics</topic><topic>Libration</topic><topic>Pendulums</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MELVIN, PETER J.</creatorcontrib><collection>CrossRef</collection><jtitle>Quarterly of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MELVIN, PETER J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE FIGURE-OF-8 LIBRATIONS OF THE GRAVITY GRADIENT PENDULUM AND MODES OF AN ORBITING TETHER</atitle><jtitle>Quarterly of applied mathematics</jtitle><date>1988-12-01</date><risdate>1988</risdate><volume>46</volume><issue>4</issue><spage>637</spage><epage>663</epage><pages>637-663</pages><issn>0033-569X</issn><eissn>1552-4485</eissn><abstract>An algorithm is presented for the Hill-Poincaré analytical continuation of the out-of-plane normal mode of the gravity gradient pendulum. The Poincaré-Lindstedt solution employs 17 Poisson series and 24 recursion relations and was evaluated to the 50th order on a CRAY. The trajectories of the nonlinear normal modes are figures-of-8 on the unit sphere which can be computed nearly to the orbit normal. Numerical integrations indicate further that 1) initial conditions computed at the nadir can be used to generate figures-of-8 over the pole, 2) the single hemispherical figures-of-8 appear to be stable at large amplitudes, and 3) the gravity gradient pendulum has chaotic solutions. A theory is developed for the linear normal modes of a tethered satellite, and the eigenvalues are found for the rosary tether.</abstract><pub>Brown University</pub><doi>10.1090/qam/973381</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-569X |
ispartof | Quarterly of applied mathematics, 1988-12, Vol.46 (4), p.637-663 |
issn | 0033-569X 1552-4485 |
language | eng |
recordid | cdi_crossref_primary_10_1090_qam_973381 |
source | American Mathematical Society Publications (Freely Accessible); JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; American Mathematical Society Publications; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Center of mass Coefficients Eigenvalues Equations of motion Gravity Kinetics Libration Pendulums Trajectories |
title | THE FIGURE-OF-8 LIBRATIONS OF THE GRAVITY GRADIENT PENDULUM AND MODES OF AN ORBITING TETHER |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A23%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20FIGURE-OF-8%20LIBRATIONS%20OF%20THE%20GRAVITY%20GRADIENT%20PENDULUM%20AND%20MODES%20OF%20AN%20ORBITING%20TETHER&rft.jtitle=Quarterly%20of%20applied%20mathematics&rft.au=MELVIN,%20PETER%20J.&rft.date=1988-12-01&rft.volume=46&rft.issue=4&rft.spage=637&rft.epage=663&rft.pages=637-663&rft.issn=0033-569X&rft.eissn=1552-4485&rft_id=info:doi/10.1090/qam/973381&rft_dat=%3Cjstor_cross%3E43637523%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43637523&rfr_iscdi=true |