OPTIMAL TEMPERATURE PATHS FOR THERMORHEOLOGICALLY SIMPLE VISCOELASTIC MATERIALS WITH CONSTANT POISSON'S RATIO ARE CANONICAL
In this note we discuss the thermal stress problem for a Thermorheologically-simple linearly-viscoelastic body, subjected to a spatially-uniform temperature field and homogeneous boundary conditions, assuming that Poisson's ratio is constant and inertia negligible. In particular, we consider th...
Gespeichert in:
Veröffentlicht in: | Quarterly of applied mathematics 1984-01, Vol.41 (4), p.457-460 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 460 |
---|---|
container_issue | 4 |
container_start_page | 457 |
container_title | Quarterly of applied mathematics |
container_volume | 41 |
creator | GURTIN, MORTON E. MURPHY, LEA F. |
description | In this note we discuss the thermal stress problem for a Thermorheologically-simple linearly-viscoelastic body, subjected to a spatially-uniform temperature field and homogeneous boundary conditions, assuming that Poisson's ratio is constant and inertia negligible. In particular, we consider the following optimization problem: of all temperature paths θ(t), 0 ≤ t ≤ tf, which belong to a given function class, is there one which renders a given stress measure a minimum at time tf. We show that a resulting optimal path θ(t) (if it exists) is canonical: θ(t) is independent of the shape of the body and of the particular homogeneous boundary conditions. |
doi_str_mv | 10.1090/qam/724056 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_qam_724056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43637221</jstor_id><sourcerecordid>43637221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1906-67f7ce20a457d2bf47d1236cbb400d01f5b09847bd76c424e5f0f90b0637758b3</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4MoOKcX70IOgiDUvaRJsx5DyWygbUqT-eNU2m6Fjc3N1ov4z9uxsdPj8f28z4MvQvcEXgiEMPmuthNBGfDgAo0I59RjbMov0QjA9z0ehB_X6Kbv18M6pDBCfyZ3OpUJdirNVSHdvFA4ly62eGYK7GJVpKaIlUnMq45kknxiq9M8UfhN28ioRFqnI5xKpwotE4vftYtxZDLrZOZwbrS1JnuyeFBrg-Vgj2RmsoPrFl211aZf3p3mGM1nykWxd_rlNSSEwAtEK5olhYpxsaB1y8SCUD9o6poBLIC0vIZwykS9EEHDKFvyFtoQagh8Ifi09sfo-ehtul3fd8u23HerbdX9lgTKQ23lUFt5rG2AH4_wvuqbatN21Vez6s8XYUA5YXTAHo7Yuv_ZdeeY-cNTSon_Dz-bbHY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>OPTIMAL TEMPERATURE PATHS FOR THERMORHEOLOGICALLY SIMPLE VISCOELASTIC MATERIALS WITH CONSTANT POISSON'S RATIO ARE CANONICAL</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>American Mathematical Society Journals</source><creator>GURTIN, MORTON E. ; MURPHY, LEA F.</creator><creatorcontrib>GURTIN, MORTON E. ; MURPHY, LEA F.</creatorcontrib><description>In this note we discuss the thermal stress problem for a Thermorheologically-simple linearly-viscoelastic body, subjected to a spatially-uniform temperature field and homogeneous boundary conditions, assuming that Poisson's ratio is constant and inertia negligible. In particular, we consider the following optimization problem: of all temperature paths θ(t), 0 ≤ t ≤ tf, which belong to a given function class, is there one which renders a given stress measure a minimum at time tf. We show that a resulting optimal path θ(t) (if it exists) is canonical: θ(t) is independent of the shape of the body and of the particular homogeneous boundary conditions.</description><identifier>ISSN: 0033-569X</identifier><identifier>EISSN: 1552-4485</identifier><identifier>DOI: 10.1090/qam/724056</identifier><identifier>CODEN: QAMAAY</identifier><language>eng</language><publisher>Providence, RI: Brown University</publisher><subject>Boundary conditions ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Mathematical constants ; Mathematical functions ; Physics ; Poisson ratio ; Shear stress ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; Temperature distribution ; Thermal stress</subject><ispartof>Quarterly of applied mathematics, 1984-01, Vol.41 (4), p.457-460</ispartof><rights>1984, Brown University</rights><rights>1984 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1906-67f7ce20a457d2bf47d1236cbb400d01f5b09847bd76c424e5f0f90b0637758b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43637221$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43637221$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,4024,27923,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9625142$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GURTIN, MORTON E.</creatorcontrib><creatorcontrib>MURPHY, LEA F.</creatorcontrib><title>OPTIMAL TEMPERATURE PATHS FOR THERMORHEOLOGICALLY SIMPLE VISCOELASTIC MATERIALS WITH CONSTANT POISSON'S RATIO ARE CANONICAL</title><title>Quarterly of applied mathematics</title><description>In this note we discuss the thermal stress problem for a Thermorheologically-simple linearly-viscoelastic body, subjected to a spatially-uniform temperature field and homogeneous boundary conditions, assuming that Poisson's ratio is constant and inertia negligible. In particular, we consider the following optimization problem: of all temperature paths θ(t), 0 ≤ t ≤ tf, which belong to a given function class, is there one which renders a given stress measure a minimum at time tf. We show that a resulting optimal path θ(t) (if it exists) is canonical: θ(t) is independent of the shape of the body and of the particular homogeneous boundary conditions.</description><subject>Boundary conditions</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical constants</subject><subject>Mathematical functions</subject><subject>Physics</subject><subject>Poisson ratio</subject><subject>Shear stress</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>Temperature distribution</subject><subject>Thermal stress</subject><issn>0033-569X</issn><issn>1552-4485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LwzAUx4MoOKcX70IOgiDUvaRJsx5DyWygbUqT-eNU2m6Fjc3N1ov4z9uxsdPj8f28z4MvQvcEXgiEMPmuthNBGfDgAo0I59RjbMov0QjA9z0ehB_X6Kbv18M6pDBCfyZ3OpUJdirNVSHdvFA4ly62eGYK7GJVpKaIlUnMq45kknxiq9M8UfhN28ioRFqnI5xKpwotE4vftYtxZDLrZOZwbrS1JnuyeFBrg-Vgj2RmsoPrFl211aZf3p3mGM1nykWxd_rlNSSEwAtEK5olhYpxsaB1y8SCUD9o6poBLIC0vIZwykS9EEHDKFvyFtoQagh8Ifi09sfo-ehtul3fd8u23HerbdX9lgTKQ23lUFt5rG2AH4_wvuqbatN21Vez6s8XYUA5YXTAHo7Yuv_ZdeeY-cNTSon_Dz-bbHY</recordid><startdate>19840101</startdate><enddate>19840101</enddate><creator>GURTIN, MORTON E.</creator><creator>MURPHY, LEA F.</creator><general>Brown University</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19840101</creationdate><title>OPTIMAL TEMPERATURE PATHS FOR THERMORHEOLOGICALLY SIMPLE VISCOELASTIC MATERIALS WITH CONSTANT POISSON'S RATIO ARE CANONICAL</title><author>GURTIN, MORTON E. ; MURPHY, LEA F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1906-67f7ce20a457d2bf47d1236cbb400d01f5b09847bd76c424e5f0f90b0637758b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Boundary conditions</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical constants</topic><topic>Mathematical functions</topic><topic>Physics</topic><topic>Poisson ratio</topic><topic>Shear stress</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>Temperature distribution</topic><topic>Thermal stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GURTIN, MORTON E.</creatorcontrib><creatorcontrib>MURPHY, LEA F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Quarterly of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GURTIN, MORTON E.</au><au>MURPHY, LEA F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OPTIMAL TEMPERATURE PATHS FOR THERMORHEOLOGICALLY SIMPLE VISCOELASTIC MATERIALS WITH CONSTANT POISSON'S RATIO ARE CANONICAL</atitle><jtitle>Quarterly of applied mathematics</jtitle><date>1984-01-01</date><risdate>1984</risdate><volume>41</volume><issue>4</issue><spage>457</spage><epage>460</epage><pages>457-460</pages><issn>0033-569X</issn><eissn>1552-4485</eissn><coden>QAMAAY</coden><abstract>In this note we discuss the thermal stress problem for a Thermorheologically-simple linearly-viscoelastic body, subjected to a spatially-uniform temperature field and homogeneous boundary conditions, assuming that Poisson's ratio is constant and inertia negligible. In particular, we consider the following optimization problem: of all temperature paths θ(t), 0 ≤ t ≤ tf, which belong to a given function class, is there one which renders a given stress measure a minimum at time tf. We show that a resulting optimal path θ(t) (if it exists) is canonical: θ(t) is independent of the shape of the body and of the particular homogeneous boundary conditions.</abstract><cop>Providence, RI</cop><pub>Brown University</pub><doi>10.1090/qam/724056</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-569X |
ispartof | Quarterly of applied mathematics, 1984-01, Vol.41 (4), p.457-460 |
issn | 0033-569X 1552-4485 |
language | eng |
recordid | cdi_crossref_primary_10_1090_qam_724056 |
source | American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; Jstor Complete Legacy; American Mathematical Society Journals |
subjects | Boundary conditions Exact sciences and technology Fundamental areas of phenomenology (including applications) Mathematical constants Mathematical functions Physics Poisson ratio Shear stress Solid mechanics Static elasticity (thermoelasticity...) Structural and continuum mechanics Temperature distribution Thermal stress |
title | OPTIMAL TEMPERATURE PATHS FOR THERMORHEOLOGICALLY SIMPLE VISCOELASTIC MATERIALS WITH CONSTANT POISSON'S RATIO ARE CANONICAL |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A46%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OPTIMAL%20TEMPERATURE%20PATHS%20FOR%20THERMORHEOLOGICALLY%20SIMPLE%20VISCOELASTIC%20MATERIALS%20WITH%20CONSTANT%20POISSON'S%20RATIO%20ARE%20CANONICAL&rft.jtitle=Quarterly%20of%20applied%20mathematics&rft.au=GURTIN,%20MORTON%20E.&rft.date=1984-01-01&rft.volume=41&rft.issue=4&rft.spage=457&rft.epage=460&rft.pages=457-460&rft.issn=0033-569X&rft.eissn=1552-4485&rft.coden=QAMAAY&rft_id=info:doi/10.1090/qam/724056&rft_dat=%3Cjstor_cross%3E43637221%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43637221&rfr_iscdi=true |