OPTIMAL TEMPERATURE PATHS FOR THERMORHEOLOGICALLY SIMPLE VISCOELASTIC MATERIALS WITH CONSTANT POISSON'S RATIO ARE CANONICAL

In this note we discuss the thermal stress problem for a Thermorheologically-simple linearly-viscoelastic body, subjected to a spatially-uniform temperature field and homogeneous boundary conditions, assuming that Poisson's ratio is constant and inertia negligible. In particular, we consider th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quarterly of applied mathematics 1984-01, Vol.41 (4), p.457-460
Hauptverfasser: GURTIN, MORTON E., MURPHY, LEA F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 460
container_issue 4
container_start_page 457
container_title Quarterly of applied mathematics
container_volume 41
creator GURTIN, MORTON E.
MURPHY, LEA F.
description In this note we discuss the thermal stress problem for a Thermorheologically-simple linearly-viscoelastic body, subjected to a spatially-uniform temperature field and homogeneous boundary conditions, assuming that Poisson's ratio is constant and inertia negligible. In particular, we consider the following optimization problem: of all temperature paths θ(t), 0 ≤ t ≤ tf, which belong to a given function class, is there one which renders a given stress measure a minimum at time tf. We show that a resulting optimal path θ(t) (if it exists) is canonical: θ(t) is independent of the shape of the body and of the particular homogeneous boundary conditions.
doi_str_mv 10.1090/qam/724056
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_qam_724056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43637221</jstor_id><sourcerecordid>43637221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1906-67f7ce20a457d2bf47d1236cbb400d01f5b09847bd76c424e5f0f90b0637758b3</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4MoOKcX70IOgiDUvaRJsx5DyWygbUqT-eNU2m6Fjc3N1ov4z9uxsdPj8f28z4MvQvcEXgiEMPmuthNBGfDgAo0I59RjbMov0QjA9z0ehB_X6Kbv18M6pDBCfyZ3OpUJdirNVSHdvFA4ly62eGYK7GJVpKaIlUnMq45kknxiq9M8UfhN28ioRFqnI5xKpwotE4vftYtxZDLrZOZwbrS1JnuyeFBrg-Vgj2RmsoPrFl211aZf3p3mGM1nykWxd_rlNSSEwAtEK5olhYpxsaB1y8SCUD9o6poBLIC0vIZwykS9EEHDKFvyFtoQagh8Ifi09sfo-ehtul3fd8u23HerbdX9lgTKQ23lUFt5rG2AH4_wvuqbatN21Vez6s8XYUA5YXTAHo7Yuv_ZdeeY-cNTSon_Dz-bbHY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>OPTIMAL TEMPERATURE PATHS FOR THERMORHEOLOGICALLY SIMPLE VISCOELASTIC MATERIALS WITH CONSTANT POISSON'S RATIO ARE CANONICAL</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>American Mathematical Society Journals</source><creator>GURTIN, MORTON E. ; MURPHY, LEA F.</creator><creatorcontrib>GURTIN, MORTON E. ; MURPHY, LEA F.</creatorcontrib><description>In this note we discuss the thermal stress problem for a Thermorheologically-simple linearly-viscoelastic body, subjected to a spatially-uniform temperature field and homogeneous boundary conditions, assuming that Poisson's ratio is constant and inertia negligible. In particular, we consider the following optimization problem: of all temperature paths θ(t), 0 ≤ t ≤ tf, which belong to a given function class, is there one which renders a given stress measure a minimum at time tf. We show that a resulting optimal path θ(t) (if it exists) is canonical: θ(t) is independent of the shape of the body and of the particular homogeneous boundary conditions.</description><identifier>ISSN: 0033-569X</identifier><identifier>EISSN: 1552-4485</identifier><identifier>DOI: 10.1090/qam/724056</identifier><identifier>CODEN: QAMAAY</identifier><language>eng</language><publisher>Providence, RI: Brown University</publisher><subject>Boundary conditions ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Mathematical constants ; Mathematical functions ; Physics ; Poisson ratio ; Shear stress ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; Temperature distribution ; Thermal stress</subject><ispartof>Quarterly of applied mathematics, 1984-01, Vol.41 (4), p.457-460</ispartof><rights>1984, Brown University</rights><rights>1984 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1906-67f7ce20a457d2bf47d1236cbb400d01f5b09847bd76c424e5f0f90b0637758b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43637221$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43637221$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,4024,27923,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=9625142$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GURTIN, MORTON E.</creatorcontrib><creatorcontrib>MURPHY, LEA F.</creatorcontrib><title>OPTIMAL TEMPERATURE PATHS FOR THERMORHEOLOGICALLY SIMPLE VISCOELASTIC MATERIALS WITH CONSTANT POISSON'S RATIO ARE CANONICAL</title><title>Quarterly of applied mathematics</title><description>In this note we discuss the thermal stress problem for a Thermorheologically-simple linearly-viscoelastic body, subjected to a spatially-uniform temperature field and homogeneous boundary conditions, assuming that Poisson's ratio is constant and inertia negligible. In particular, we consider the following optimization problem: of all temperature paths θ(t), 0 ≤ t ≤ tf, which belong to a given function class, is there one which renders a given stress measure a minimum at time tf. We show that a resulting optimal path θ(t) (if it exists) is canonical: θ(t) is independent of the shape of the body and of the particular homogeneous boundary conditions.</description><subject>Boundary conditions</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical constants</subject><subject>Mathematical functions</subject><subject>Physics</subject><subject>Poisson ratio</subject><subject>Shear stress</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>Temperature distribution</subject><subject>Thermal stress</subject><issn>0033-569X</issn><issn>1552-4485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LwzAUx4MoOKcX70IOgiDUvaRJsx5DyWygbUqT-eNU2m6Fjc3N1ov4z9uxsdPj8f28z4MvQvcEXgiEMPmuthNBGfDgAo0I59RjbMov0QjA9z0ehB_X6Kbv18M6pDBCfyZ3OpUJdirNVSHdvFA4ly62eGYK7GJVpKaIlUnMq45kknxiq9M8UfhN28ioRFqnI5xKpwotE4vftYtxZDLrZOZwbrS1JnuyeFBrg-Vgj2RmsoPrFl211aZf3p3mGM1nykWxd_rlNSSEwAtEK5olhYpxsaB1y8SCUD9o6poBLIC0vIZwykS9EEHDKFvyFtoQagh8Ifi09sfo-ehtul3fd8u23HerbdX9lgTKQ23lUFt5rG2AH4_wvuqbatN21Vez6s8XYUA5YXTAHo7Yuv_ZdeeY-cNTSon_Dz-bbHY</recordid><startdate>19840101</startdate><enddate>19840101</enddate><creator>GURTIN, MORTON E.</creator><creator>MURPHY, LEA F.</creator><general>Brown University</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19840101</creationdate><title>OPTIMAL TEMPERATURE PATHS FOR THERMORHEOLOGICALLY SIMPLE VISCOELASTIC MATERIALS WITH CONSTANT POISSON'S RATIO ARE CANONICAL</title><author>GURTIN, MORTON E. ; MURPHY, LEA F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1906-67f7ce20a457d2bf47d1236cbb400d01f5b09847bd76c424e5f0f90b0637758b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Boundary conditions</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical constants</topic><topic>Mathematical functions</topic><topic>Physics</topic><topic>Poisson ratio</topic><topic>Shear stress</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>Temperature distribution</topic><topic>Thermal stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GURTIN, MORTON E.</creatorcontrib><creatorcontrib>MURPHY, LEA F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Quarterly of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GURTIN, MORTON E.</au><au>MURPHY, LEA F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OPTIMAL TEMPERATURE PATHS FOR THERMORHEOLOGICALLY SIMPLE VISCOELASTIC MATERIALS WITH CONSTANT POISSON'S RATIO ARE CANONICAL</atitle><jtitle>Quarterly of applied mathematics</jtitle><date>1984-01-01</date><risdate>1984</risdate><volume>41</volume><issue>4</issue><spage>457</spage><epage>460</epage><pages>457-460</pages><issn>0033-569X</issn><eissn>1552-4485</eissn><coden>QAMAAY</coden><abstract>In this note we discuss the thermal stress problem for a Thermorheologically-simple linearly-viscoelastic body, subjected to a spatially-uniform temperature field and homogeneous boundary conditions, assuming that Poisson's ratio is constant and inertia negligible. In particular, we consider the following optimization problem: of all temperature paths θ(t), 0 ≤ t ≤ tf, which belong to a given function class, is there one which renders a given stress measure a minimum at time tf. We show that a resulting optimal path θ(t) (if it exists) is canonical: θ(t) is independent of the shape of the body and of the particular homogeneous boundary conditions.</abstract><cop>Providence, RI</cop><pub>Brown University</pub><doi>10.1090/qam/724056</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0033-569X
ispartof Quarterly of applied mathematics, 1984-01, Vol.41 (4), p.457-460
issn 0033-569X
1552-4485
language eng
recordid cdi_crossref_primary_10_1090_qam_724056
source American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; Jstor Complete Legacy; American Mathematical Society Journals
subjects Boundary conditions
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Mathematical constants
Mathematical functions
Physics
Poisson ratio
Shear stress
Solid mechanics
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
Temperature distribution
Thermal stress
title OPTIMAL TEMPERATURE PATHS FOR THERMORHEOLOGICALLY SIMPLE VISCOELASTIC MATERIALS WITH CONSTANT POISSON'S RATIO ARE CANONICAL
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A46%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OPTIMAL%20TEMPERATURE%20PATHS%20FOR%20THERMORHEOLOGICALLY%20SIMPLE%20VISCOELASTIC%20MATERIALS%20WITH%20CONSTANT%20POISSON'S%20RATIO%20ARE%20CANONICAL&rft.jtitle=Quarterly%20of%20applied%20mathematics&rft.au=GURTIN,%20MORTON%20E.&rft.date=1984-01-01&rft.volume=41&rft.issue=4&rft.spage=457&rft.epage=460&rft.pages=457-460&rft.issn=0033-569X&rft.eissn=1552-4485&rft.coden=QAMAAY&rft_id=info:doi/10.1090/qam/724056&rft_dat=%3Cjstor_cross%3E43637221%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43637221&rfr_iscdi=true