OPTIMAL TEMPERATURE PATHS FOR THERMORHEOLOGICALLY SIMPLE VISCOELASTIC MATERIALS WITH CONSTANT POISSON'S RATIO ARE CANONICAL
In this note we discuss the thermal stress problem for a Thermorheologically-simple linearly-viscoelastic body, subjected to a spatially-uniform temperature field and homogeneous boundary conditions, assuming that Poisson's ratio is constant and inertia negligible. In particular, we consider th...
Gespeichert in:
Veröffentlicht in: | Quarterly of applied mathematics 1984-01, Vol.41 (4), p.457-460 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this note we discuss the thermal stress problem for a Thermorheologically-simple linearly-viscoelastic body, subjected to a spatially-uniform temperature field and homogeneous boundary conditions, assuming that Poisson's ratio is constant and inertia negligible. In particular, we consider the following optimization problem: of all temperature paths θ(t), 0 ≤ t ≤ tf, which belong to a given function class, is there one which renders a given stress measure a minimum at time tf. We show that a resulting optimal path θ(t) (if it exists) is canonical: θ(t) is independent of the shape of the body and of the particular homogeneous boundary conditions. |
---|---|
ISSN: | 0033-569X 1552-4485 |
DOI: | 10.1090/qam/724056 |