Time-asymptotic stability for first-order symmetric hyperbolic systems of balance laws in dissipative compressible fluid dynamics

This paper identifies a non-(or /iso-)thermal variant of Ruggeri’s 1983 formulation of viscous heat-conductive fluid dynamics as a hyperbolic system of balance laws and shows that both the original model and this variant have (a) time-asymptotically stable equilibria and (b) principal parts deriving...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quarterly of applied mathematics 2022-03
1. Verfasser: Freistühler, Heinrich
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Quarterly of applied mathematics
container_volume
creator Freistühler, Heinrich
description This paper identifies a non-(or /iso-)thermal variant of Ruggeri’s 1983 formulation of viscous heat-conductive fluid dynamics as a hyperbolic system of balance laws and shows that both the original model and this variant have (a) time-asymptotically stable equilibria and (b) principal parts deriving from a protopotential: a single scalar function that induces the temporospatial flux as an appropriate part of its Hessian.
doi_str_mv 10.1090/qam/1620
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1090_qam_1620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_qam_1620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1760-9dfe44733f066be146c2aa196fa8c4cd3abeb951d274df306aae1a3e99f88673</originalsourceid><addsrcrecordid>eNotkE1LxDAURYMoOI6CPyFLN3WSJk2bpQx-wYCbWbgrL8kLRpppTaLSpf_cDrq6XO7hLg4h15zdcqbZ5gPihquanZAVb5q6krJrTsmKMSGqRunXc3KR8_tSl5WtyM8-RKwgz3EqYwmW5gImDKHM1I-J-pByqcbkMNGFiVjSwrzNEyYzDkd8zgVjpqOnBgY4WKQDfGcaDtSFnMMEJXwhtWOcEi7dDEj98BkcdfMBYrD5kpx5GDJe_eea7B_u99unavfy-Ly921WWt4pV2nmUshXCM6UMcqlsDcC18tBZaZ0Ag0Y33NWtdF4wBYAcBGrtu061Yk1u_m5tGnNO6PsphQhp7jnrj-b6xVx_NCd-AVJmZfc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Time-asymptotic stability for first-order symmetric hyperbolic systems of balance laws in dissipative compressible fluid dynamics</title><source>American Mathematical Society Publications</source><creator>Freistühler, Heinrich</creator><creatorcontrib>Freistühler, Heinrich</creatorcontrib><description>This paper identifies a non-(or /iso-)thermal variant of Ruggeri’s 1983 formulation of viscous heat-conductive fluid dynamics as a hyperbolic system of balance laws and shows that both the original model and this variant have (a) time-asymptotically stable equilibria and (b) principal parts deriving from a protopotential: a single scalar function that induces the temporospatial flux as an appropriate part of its Hessian.</description><identifier>ISSN: 0033-569X</identifier><identifier>EISSN: 1552-4485</identifier><identifier>DOI: 10.1090/qam/1620</identifier><language>eng</language><ispartof>Quarterly of applied mathematics, 2022-03</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1760-9dfe44733f066be146c2aa196fa8c4cd3abeb951d274df306aae1a3e99f88673</citedby><cites>FETCH-LOGICAL-c1760-9dfe44733f066be146c2aa196fa8c4cd3abeb951d274df306aae1a3e99f88673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Freistühler, Heinrich</creatorcontrib><title>Time-asymptotic stability for first-order symmetric hyperbolic systems of balance laws in dissipative compressible fluid dynamics</title><title>Quarterly of applied mathematics</title><description>This paper identifies a non-(or /iso-)thermal variant of Ruggeri’s 1983 formulation of viscous heat-conductive fluid dynamics as a hyperbolic system of balance laws and shows that both the original model and this variant have (a) time-asymptotically stable equilibria and (b) principal parts deriving from a protopotential: a single scalar function that induces the temporospatial flux as an appropriate part of its Hessian.</description><issn>0033-569X</issn><issn>1552-4485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAURYMoOI6CPyFLN3WSJk2bpQx-wYCbWbgrL8kLRpppTaLSpf_cDrq6XO7hLg4h15zdcqbZ5gPihquanZAVb5q6krJrTsmKMSGqRunXc3KR8_tSl5WtyM8-RKwgz3EqYwmW5gImDKHM1I-J-pByqcbkMNGFiVjSwrzNEyYzDkd8zgVjpqOnBgY4WKQDfGcaDtSFnMMEJXwhtWOcEi7dDEj98BkcdfMBYrD5kpx5GDJe_eea7B_u99unavfy-Ly921WWt4pV2nmUshXCM6UMcqlsDcC18tBZaZ0Ag0Y33NWtdF4wBYAcBGrtu061Yk1u_m5tGnNO6PsphQhp7jnrj-b6xVx_NCd-AVJmZfc</recordid><startdate>20220315</startdate><enddate>20220315</enddate><creator>Freistühler, Heinrich</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220315</creationdate><title>Time-asymptotic stability for first-order symmetric hyperbolic systems of balance laws in dissipative compressible fluid dynamics</title><author>Freistühler, Heinrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1760-9dfe44733f066be146c2aa196fa8c4cd3abeb951d274df306aae1a3e99f88673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freistühler, Heinrich</creatorcontrib><collection>CrossRef</collection><jtitle>Quarterly of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freistühler, Heinrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-asymptotic stability for first-order symmetric hyperbolic systems of balance laws in dissipative compressible fluid dynamics</atitle><jtitle>Quarterly of applied mathematics</jtitle><date>2022-03-15</date><risdate>2022</risdate><issn>0033-569X</issn><eissn>1552-4485</eissn><abstract>This paper identifies a non-(or /iso-)thermal variant of Ruggeri’s 1983 formulation of viscous heat-conductive fluid dynamics as a hyperbolic system of balance laws and shows that both the original model and this variant have (a) time-asymptotically stable equilibria and (b) principal parts deriving from a protopotential: a single scalar function that induces the temporospatial flux as an appropriate part of its Hessian.</abstract><doi>10.1090/qam/1620</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0033-569X
ispartof Quarterly of applied mathematics, 2022-03
issn 0033-569X
1552-4485
language eng
recordid cdi_crossref_primary_10_1090_qam_1620
source American Mathematical Society Publications
title Time-asymptotic stability for first-order symmetric hyperbolic systems of balance laws in dissipative compressible fluid dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A07%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-asymptotic%20stability%20for%20first-order%20symmetric%20hyperbolic%20systems%20of%20balance%20laws%20in%20dissipative%20compressible%20fluid%20dynamics&rft.jtitle=Quarterly%20of%20applied%20mathematics&rft.au=Freist%C3%BChler,%20Heinrich&rft.date=2022-03-15&rft.issn=0033-569X&rft.eissn=1552-4485&rft_id=info:doi/10.1090/qam/1620&rft_dat=%3Ccrossref%3E10_1090_qam_1620%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true