Shock-layer bounds for a singularly perturbed equation
The size of the shock-layer governed by a conservation law is studied. The conservation law is a parabolic reaction-convection-diffusion equation with a small parameter multiplying the diffusion term and convex flux. Rigorous upper and lower bounding functions for the solution of the conservation la...
Gespeichert in:
Veröffentlicht in: | Quarterly of applied mathematics 1995-09, Vol.53 (3), p.423-431 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 431 |
---|---|
container_issue | 3 |
container_start_page | 423 |
container_title | Quarterly of applied mathematics |
container_volume | 53 |
creator | Scroggs, Jeffrey S. |
description | The size of the shock-layer governed by a conservation law is studied. The conservation law is a parabolic reaction-convection-diffusion equation with a small parameter multiplying the diffusion term and convex flux. Rigorous upper and lower bounding functions for the solution of the conservation law are established based on maximum-principle arguments. The bounding functions demonstrate that the size of the shock-layer is proportional to the parameter multiplying the diffusion term. |
doi_str_mv | 10.1090/qam/1343460 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_qam_1343460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43638072</jstor_id><sourcerecordid>43638072</sourcerecordid><originalsourceid>FETCH-LOGICAL-a282t-d2ea4314de3ec1f477415b36f2fe0721b3b3e34f16bba14496b36af4b98999f03</originalsourceid><addsrcrecordid>eNp9jz1PwzAQhi0EEqEwMSNlQCwo1M5d3HhEFV9SJQZAYovOiQ0padLayZB_j1Gqjkyn0_Pcx8vYpeB3gis-39FmLgABJT9ikciyNEHMs2MWcQ6QZFJ9nrIz79ehDZRHTL59d-VP0tBoXKy7oa18bDsXU-zr9mtoyDVjvDWuH5w2VWx2A_V1156zE0uNNxf7OmMfjw_vy-dk9fr0srxfJZTmaZ9UqSEEgZUBUwqLiwWKTIO0qTV8kQoNGgygFVJrEohKBkgWtcqVUpbDjN1Oe0vXee-MLbau3pAbC8GLv8hFiFzsIwf7erK35EtqrKO2rP1hBCQgl3nQriZt7fvOHTAGnoevAr-ZOG38v_d-AXMCa6k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Shock-layer bounds for a singularly perturbed equation</title><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics & Statistics</source><creator>Scroggs, Jeffrey S.</creator><creatorcontrib>Scroggs, Jeffrey S.</creatorcontrib><description>The size of the shock-layer governed by a conservation law is studied. The conservation law is a parabolic reaction-convection-diffusion equation with a small parameter multiplying the diffusion term and convex flux. Rigorous upper and lower bounding functions for the solution of the conservation law are established based on maximum-principle arguments. The bounding functions demonstrate that the size of the shock-layer is proportional to the parameter multiplying the diffusion term.</description><identifier>ISSN: 0033-569X</identifier><identifier>EISSN: 1552-4485</identifier><identifier>DOI: 10.1090/qam/1343460</identifier><identifier>CODEN: QAMAAY</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Applied mathematics ; Canonical forms ; Conservation laws ; Exact sciences and technology ; Mathematical analysis ; Mathematical functions ; Mathematics ; Maximum principle ; Partial differential equations ; Research article ; Sciences and techniques of general use</subject><ispartof>Quarterly of applied mathematics, 1995-09, Vol.53 (3), p.423-431</ispartof><rights>Copyright 1995 American Mathematical Society</rights><rights>1995 Brown University</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a282t-d2ea4314de3ec1f477415b36f2fe0721b3b3e34f16bba14496b36af4b98999f03</citedby><cites>FETCH-LOGICAL-a282t-d2ea4314de3ec1f477415b36f2fe0721b3b3e34f16bba14496b36af4b98999f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/qam/1995-53-03/S0033-569X-1995-1343460-5/https://www.ams.org/qam/1995-53-03/S0033-569X-1995-1343460-5/.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/qam/1995-53-03/S0033-569X-1995-1343460-5/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,776,780,799,828,23303,23307,27901,27902,57992,57996,58225,58229,77578,77580,77588,77590</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3634068$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Scroggs, Jeffrey S.</creatorcontrib><title>Shock-layer bounds for a singularly perturbed equation</title><title>Quarterly of applied mathematics</title><addtitle>Quart. Appl. Math</addtitle><description>The size of the shock-layer governed by a conservation law is studied. The conservation law is a parabolic reaction-convection-diffusion equation with a small parameter multiplying the diffusion term and convex flux. Rigorous upper and lower bounding functions for the solution of the conservation law are established based on maximum-principle arguments. The bounding functions demonstrate that the size of the shock-layer is proportional to the parameter multiplying the diffusion term.</description><subject>Applied mathematics</subject><subject>Canonical forms</subject><subject>Conservation laws</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Maximum principle</subject><subject>Partial differential equations</subject><subject>Research article</subject><subject>Sciences and techniques of general use</subject><issn>0033-569X</issn><issn>1552-4485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp9jz1PwzAQhi0EEqEwMSNlQCwo1M5d3HhEFV9SJQZAYovOiQ0padLayZB_j1Gqjkyn0_Pcx8vYpeB3gis-39FmLgABJT9ikciyNEHMs2MWcQ6QZFJ9nrIz79ehDZRHTL59d-VP0tBoXKy7oa18bDsXU-zr9mtoyDVjvDWuH5w2VWx2A_V1156zE0uNNxf7OmMfjw_vy-dk9fr0srxfJZTmaZ9UqSEEgZUBUwqLiwWKTIO0qTV8kQoNGgygFVJrEohKBkgWtcqVUpbDjN1Oe0vXee-MLbau3pAbC8GLv8hFiFzsIwf7erK35EtqrKO2rP1hBCQgl3nQriZt7fvOHTAGnoevAr-ZOG38v_d-AXMCa6k</recordid><startdate>19950901</startdate><enddate>19950901</enddate><creator>Scroggs, Jeffrey S.</creator><general>American Mathematical Society</general><general>Brown University</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19950901</creationdate><title>Shock-layer bounds for a singularly perturbed equation</title><author>Scroggs, Jeffrey S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a282t-d2ea4314de3ec1f477415b36f2fe0721b3b3e34f16bba14496b36af4b98999f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Applied mathematics</topic><topic>Canonical forms</topic><topic>Conservation laws</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Maximum principle</topic><topic>Partial differential equations</topic><topic>Research article</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scroggs, Jeffrey S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Quarterly of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scroggs, Jeffrey S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shock-layer bounds for a singularly perturbed equation</atitle><jtitle>Quarterly of applied mathematics</jtitle><stitle>Quart. Appl. Math</stitle><date>1995-09-01</date><risdate>1995</risdate><volume>53</volume><issue>3</issue><spage>423</spage><epage>431</epage><pages>423-431</pages><issn>0033-569X</issn><eissn>1552-4485</eissn><coden>QAMAAY</coden><abstract>The size of the shock-layer governed by a conservation law is studied. The conservation law is a parabolic reaction-convection-diffusion equation with a small parameter multiplying the diffusion term and convex flux. Rigorous upper and lower bounding functions for the solution of the conservation law are established based on maximum-principle arguments. The bounding functions demonstrate that the size of the shock-layer is proportional to the parameter multiplying the diffusion term.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/qam/1343460</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-569X |
ispartof | Quarterly of applied mathematics, 1995-09, Vol.53 (3), p.423-431 |
issn | 0033-569X 1552-4485 |
language | eng |
recordid | cdi_crossref_primary_10_1090_qam_1343460 |
source | Jstor Complete Legacy; American Mathematical Society Publications; American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics |
subjects | Applied mathematics Canonical forms Conservation laws Exact sciences and technology Mathematical analysis Mathematical functions Mathematics Maximum principle Partial differential equations Research article Sciences and techniques of general use |
title | Shock-layer bounds for a singularly perturbed equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A39%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shock-layer%20bounds%20for%20a%20singularly%20perturbed%20equation&rft.jtitle=Quarterly%20of%20applied%20mathematics&rft.au=Scroggs,%20Jeffrey%20S.&rft.date=1995-09-01&rft.volume=53&rft.issue=3&rft.spage=423&rft.epage=431&rft.pages=423-431&rft.issn=0033-569X&rft.eissn=1552-4485&rft.coden=QAMAAY&rft_id=info:doi/10.1090/qam/1343460&rft_dat=%3Cjstor_cross%3E43638072%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43638072&rfr_iscdi=true |