Shock-layer bounds for a singularly perturbed equation

The size of the shock-layer governed by a conservation law is studied. The conservation law is a parabolic reaction-convection-diffusion equation with a small parameter multiplying the diffusion term and convex flux. Rigorous upper and lower bounding functions for the solution of the conservation la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quarterly of applied mathematics 1995-09, Vol.53 (3), p.423-431
1. Verfasser: Scroggs, Jeffrey S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 431
container_issue 3
container_start_page 423
container_title Quarterly of applied mathematics
container_volume 53
creator Scroggs, Jeffrey S.
description The size of the shock-layer governed by a conservation law is studied. The conservation law is a parabolic reaction-convection-diffusion equation with a small parameter multiplying the diffusion term and convex flux. Rigorous upper and lower bounding functions for the solution of the conservation law are established based on maximum-principle arguments. The bounding functions demonstrate that the size of the shock-layer is proportional to the parameter multiplying the diffusion term.
doi_str_mv 10.1090/qam/1343460
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_qam_1343460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43638072</jstor_id><sourcerecordid>43638072</sourcerecordid><originalsourceid>FETCH-LOGICAL-a282t-d2ea4314de3ec1f477415b36f2fe0721b3b3e34f16bba14496b36af4b98999f03</originalsourceid><addsrcrecordid>eNp9jz1PwzAQhi0EEqEwMSNlQCwo1M5d3HhEFV9SJQZAYovOiQ0padLayZB_j1Gqjkyn0_Pcx8vYpeB3gis-39FmLgABJT9ikciyNEHMs2MWcQ6QZFJ9nrIz79ehDZRHTL59d-VP0tBoXKy7oa18bDsXU-zr9mtoyDVjvDWuH5w2VWx2A_V1156zE0uNNxf7OmMfjw_vy-dk9fr0srxfJZTmaZ9UqSEEgZUBUwqLiwWKTIO0qTV8kQoNGgygFVJrEohKBkgWtcqVUpbDjN1Oe0vXee-MLbau3pAbC8GLv8hFiFzsIwf7erK35EtqrKO2rP1hBCQgl3nQriZt7fvOHTAGnoevAr-ZOG38v_d-AXMCa6k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Shock-layer bounds for a singularly perturbed equation</title><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Scroggs, Jeffrey S.</creator><creatorcontrib>Scroggs, Jeffrey S.</creatorcontrib><description>The size of the shock-layer governed by a conservation law is studied. The conservation law is a parabolic reaction-convection-diffusion equation with a small parameter multiplying the diffusion term and convex flux. Rigorous upper and lower bounding functions for the solution of the conservation law are established based on maximum-principle arguments. The bounding functions demonstrate that the size of the shock-layer is proportional to the parameter multiplying the diffusion term.</description><identifier>ISSN: 0033-569X</identifier><identifier>EISSN: 1552-4485</identifier><identifier>DOI: 10.1090/qam/1343460</identifier><identifier>CODEN: QAMAAY</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Applied mathematics ; Canonical forms ; Conservation laws ; Exact sciences and technology ; Mathematical analysis ; Mathematical functions ; Mathematics ; Maximum principle ; Partial differential equations ; Research article ; Sciences and techniques of general use</subject><ispartof>Quarterly of applied mathematics, 1995-09, Vol.53 (3), p.423-431</ispartof><rights>Copyright 1995 American Mathematical Society</rights><rights>1995 Brown University</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a282t-d2ea4314de3ec1f477415b36f2fe0721b3b3e34f16bba14496b36af4b98999f03</citedby><cites>FETCH-LOGICAL-a282t-d2ea4314de3ec1f477415b36f2fe0721b3b3e34f16bba14496b36af4b98999f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/qam/1995-53-03/S0033-569X-1995-1343460-5/https://www.ams.org/qam/1995-53-03/S0033-569X-1995-1343460-5/.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/qam/1995-53-03/S0033-569X-1995-1343460-5/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,776,780,799,828,23303,23307,27901,27902,57992,57996,58225,58229,77578,77580,77588,77590</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3634068$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Scroggs, Jeffrey S.</creatorcontrib><title>Shock-layer bounds for a singularly perturbed equation</title><title>Quarterly of applied mathematics</title><addtitle>Quart. Appl. Math</addtitle><description>The size of the shock-layer governed by a conservation law is studied. The conservation law is a parabolic reaction-convection-diffusion equation with a small parameter multiplying the diffusion term and convex flux. Rigorous upper and lower bounding functions for the solution of the conservation law are established based on maximum-principle arguments. The bounding functions demonstrate that the size of the shock-layer is proportional to the parameter multiplying the diffusion term.</description><subject>Applied mathematics</subject><subject>Canonical forms</subject><subject>Conservation laws</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Maximum principle</subject><subject>Partial differential equations</subject><subject>Research article</subject><subject>Sciences and techniques of general use</subject><issn>0033-569X</issn><issn>1552-4485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp9jz1PwzAQhi0EEqEwMSNlQCwo1M5d3HhEFV9SJQZAYovOiQ0padLayZB_j1Gqjkyn0_Pcx8vYpeB3gis-39FmLgABJT9ikciyNEHMs2MWcQ6QZFJ9nrIz79ehDZRHTL59d-VP0tBoXKy7oa18bDsXU-zr9mtoyDVjvDWuH5w2VWx2A_V1156zE0uNNxf7OmMfjw_vy-dk9fr0srxfJZTmaZ9UqSEEgZUBUwqLiwWKTIO0qTV8kQoNGgygFVJrEohKBkgWtcqVUpbDjN1Oe0vXee-MLbau3pAbC8GLv8hFiFzsIwf7erK35EtqrKO2rP1hBCQgl3nQriZt7fvOHTAGnoevAr-ZOG38v_d-AXMCa6k</recordid><startdate>19950901</startdate><enddate>19950901</enddate><creator>Scroggs, Jeffrey S.</creator><general>American Mathematical Society</general><general>Brown University</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19950901</creationdate><title>Shock-layer bounds for a singularly perturbed equation</title><author>Scroggs, Jeffrey S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a282t-d2ea4314de3ec1f477415b36f2fe0721b3b3e34f16bba14496b36af4b98999f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Applied mathematics</topic><topic>Canonical forms</topic><topic>Conservation laws</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Maximum principle</topic><topic>Partial differential equations</topic><topic>Research article</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scroggs, Jeffrey S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Quarterly of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scroggs, Jeffrey S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shock-layer bounds for a singularly perturbed equation</atitle><jtitle>Quarterly of applied mathematics</jtitle><stitle>Quart. Appl. Math</stitle><date>1995-09-01</date><risdate>1995</risdate><volume>53</volume><issue>3</issue><spage>423</spage><epage>431</epage><pages>423-431</pages><issn>0033-569X</issn><eissn>1552-4485</eissn><coden>QAMAAY</coden><abstract>The size of the shock-layer governed by a conservation law is studied. The conservation law is a parabolic reaction-convection-diffusion equation with a small parameter multiplying the diffusion term and convex flux. Rigorous upper and lower bounding functions for the solution of the conservation law are established based on maximum-principle arguments. The bounding functions demonstrate that the size of the shock-layer is proportional to the parameter multiplying the diffusion term.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/qam/1343460</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0033-569X
ispartof Quarterly of applied mathematics, 1995-09, Vol.53 (3), p.423-431
issn 0033-569X
1552-4485
language eng
recordid cdi_crossref_primary_10_1090_qam_1343460
source Jstor Complete Legacy; American Mathematical Society Publications; American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics
subjects Applied mathematics
Canonical forms
Conservation laws
Exact sciences and technology
Mathematical analysis
Mathematical functions
Mathematics
Maximum principle
Partial differential equations
Research article
Sciences and techniques of general use
title Shock-layer bounds for a singularly perturbed equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A39%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shock-layer%20bounds%20for%20a%20singularly%20perturbed%20equation&rft.jtitle=Quarterly%20of%20applied%20mathematics&rft.au=Scroggs,%20Jeffrey%20S.&rft.date=1995-09-01&rft.volume=53&rft.issue=3&rft.spage=423&rft.epage=431&rft.pages=423-431&rft.issn=0033-569X&rft.eissn=1552-4485&rft.coden=QAMAAY&rft_id=info:doi/10.1090/qam/1343460&rft_dat=%3Cjstor_cross%3E43638072%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43638072&rfr_iscdi=true