RELAXATION OF EULER EQUATIONS AND HYDRODYNAMIC INSTABILITIES
We present a relaxed version of incompressible Euler equations that permits foliated flows involving two velocities. These relaxed equations allow a two-phase evolution of some vortex sheets as an alternative to discontinuous solutions of Euler equations. In the case of two perfect fluids of differe...
Gespeichert in:
Veröffentlicht in: | Quarterly of applied mathematics 1992-06, Vol.50 (2), p.235-255 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 255 |
---|---|
container_issue | 2 |
container_start_page | 235 |
container_title | Quarterly of applied mathematics |
container_volume | 50 |
creator | DUCHON, JEAN ROBERT, RAOUL |
description | We present a relaxed version of incompressible Euler equations that permits foliated flows involving two velocities. These relaxed equations allow a two-phase evolution of some vortex sheets as an alternative to discontinuous solutions of Euler equations. In the case of two perfect fluids of different densities superposed one over the other, we show that this relaxation process yields a linearly well-posed two-phase solution. |
doi_str_mv | 10.1090/qam/1162274 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_qam_1162274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43637770</jstor_id><sourcerecordid>43637770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3100ff30db285024448f62380a344fea0008ecdb502a08001feaecd281d3406d3</originalsourceid><addsrcrecordid>eNpFj81PwkAQxTdGEyt68myyB2-mMruz_Uq8VCiySW0jtAmcmqXtJhAQ6HLxv3e1RE-TN-83H4-QewbPDCIYHtVuyJjPeSAuiMM8j7tChN4lcQAQXc-PFtfkxpiNldYFh7zMkjRexIXMM5pPaFKmyYwmH-VvZ07jbEyny_EsHy-z-F2OqMzmRfwqU1nIZH5LrrTamvbuXAeknCTFaOqm-ZscxalbI4tOLjIArRGaFQ894MK-pH2OISgUQrcKAMK2blbWUxACMNuzmoesQQF-gwPy1O-tu70xXaurQ7feqe6rYlD9BK9s8Ooc3NKPPX1QplZb3anPem3-Rux5gYFvsYce25jTvvu30ccgCAC_AVpOW0E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>RELAXATION OF EULER EQUATIONS AND HYDRODYNAMIC INSTABILITIES</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>American Mathematical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>DUCHON, JEAN ; ROBERT, RAOUL</creator><creatorcontrib>DUCHON, JEAN ; ROBERT, RAOUL</creatorcontrib><description>We present a relaxed version of incompressible Euler equations that permits foliated flows involving two velocities. These relaxed equations allow a two-phase evolution of some vortex sheets as an alternative to discontinuous solutions of Euler equations. In the case of two perfect fluids of different densities superposed one over the other, we show that this relaxation process yields a linearly well-posed two-phase solution.</description><identifier>ISSN: 0033-569X</identifier><identifier>EISSN: 1552-4485</identifier><identifier>DOI: 10.1090/qam/1162274</identifier><identifier>CODEN: QAMAAY</identifier><language>eng</language><publisher>Providence, RI: Brown University</publisher><subject>Analytics ; Cauchy problem ; Conservation equations ; Curl ; Euler equations ; Exact sciences and technology ; Flow velocity ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; General theory ; Kinetic energy ; Mathematics ; Physics ; Velocity distribution ; Vortex sheets</subject><ispartof>Quarterly of applied mathematics, 1992-06, Vol.50 (2), p.235-255</ispartof><rights>1992 Brown University</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3100ff30db285024448f62380a344fea0008ecdb502a08001feaecd281d3406d3</citedby><cites>FETCH-LOGICAL-c319t-3100ff30db285024448f62380a344fea0008ecdb502a08001feaecd281d3406d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43637770$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43637770$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4444376$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DUCHON, JEAN</creatorcontrib><creatorcontrib>ROBERT, RAOUL</creatorcontrib><title>RELAXATION OF EULER EQUATIONS AND HYDRODYNAMIC INSTABILITIES</title><title>Quarterly of applied mathematics</title><description>We present a relaxed version of incompressible Euler equations that permits foliated flows involving two velocities. These relaxed equations allow a two-phase evolution of some vortex sheets as an alternative to discontinuous solutions of Euler equations. In the case of two perfect fluids of different densities superposed one over the other, we show that this relaxation process yields a linearly well-posed two-phase solution.</description><subject>Analytics</subject><subject>Cauchy problem</subject><subject>Conservation equations</subject><subject>Curl</subject><subject>Euler equations</subject><subject>Exact sciences and technology</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General theory</subject><subject>Kinetic energy</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Velocity distribution</subject><subject>Vortex sheets</subject><issn>0033-569X</issn><issn>1552-4485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNpFj81PwkAQxTdGEyt68myyB2-mMruz_Uq8VCiySW0jtAmcmqXtJhAQ6HLxv3e1RE-TN-83H4-QewbPDCIYHtVuyJjPeSAuiMM8j7tChN4lcQAQXc-PFtfkxpiNldYFh7zMkjRexIXMM5pPaFKmyYwmH-VvZ07jbEyny_EsHy-z-F2OqMzmRfwqU1nIZH5LrrTamvbuXAeknCTFaOqm-ZscxalbI4tOLjIArRGaFQ894MK-pH2OISgUQrcKAMK2blbWUxACMNuzmoesQQF-gwPy1O-tu70xXaurQ7feqe6rYlD9BK9s8Ooc3NKPPX1QplZb3anPem3-Rux5gYFvsYce25jTvvu30ccgCAC_AVpOW0E</recordid><startdate>19920601</startdate><enddate>19920601</enddate><creator>DUCHON, JEAN</creator><creator>ROBERT, RAOUL</creator><general>Brown University</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19920601</creationdate><title>RELAXATION OF EULER EQUATIONS AND HYDRODYNAMIC INSTABILITIES</title><author>DUCHON, JEAN ; ROBERT, RAOUL</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3100ff30db285024448f62380a344fea0008ecdb502a08001feaecd281d3406d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Analytics</topic><topic>Cauchy problem</topic><topic>Conservation equations</topic><topic>Curl</topic><topic>Euler equations</topic><topic>Exact sciences and technology</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General theory</topic><topic>Kinetic energy</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Velocity distribution</topic><topic>Vortex sheets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DUCHON, JEAN</creatorcontrib><creatorcontrib>ROBERT, RAOUL</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Quarterly of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DUCHON, JEAN</au><au>ROBERT, RAOUL</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RELAXATION OF EULER EQUATIONS AND HYDRODYNAMIC INSTABILITIES</atitle><jtitle>Quarterly of applied mathematics</jtitle><date>1992-06-01</date><risdate>1992</risdate><volume>50</volume><issue>2</issue><spage>235</spage><epage>255</epage><pages>235-255</pages><issn>0033-569X</issn><eissn>1552-4485</eissn><coden>QAMAAY</coden><abstract>We present a relaxed version of incompressible Euler equations that permits foliated flows involving two velocities. These relaxed equations allow a two-phase evolution of some vortex sheets as an alternative to discontinuous solutions of Euler equations. In the case of two perfect fluids of different densities superposed one over the other, we show that this relaxation process yields a linearly well-posed two-phase solution.</abstract><cop>Providence, RI</cop><pub>Brown University</pub><doi>10.1090/qam/1162274</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-569X |
ispartof | Quarterly of applied mathematics, 1992-06, Vol.50 (2), p.235-255 |
issn | 0033-569X 1552-4485 |
language | eng |
recordid | cdi_crossref_primary_10_1090_qam_1162274 |
source | American Mathematical Society Publications (Freely Accessible); JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; American Mathematical Society Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Analytics Cauchy problem Conservation equations Curl Euler equations Exact sciences and technology Flow velocity Fluid dynamics Fundamental areas of phenomenology (including applications) General theory Kinetic energy Mathematics Physics Velocity distribution Vortex sheets |
title | RELAXATION OF EULER EQUATIONS AND HYDRODYNAMIC INSTABILITIES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RELAXATION%20OF%20EULER%20EQUATIONS%20AND%20HYDRODYNAMIC%20INSTABILITIES&rft.jtitle=Quarterly%20of%20applied%20mathematics&rft.au=DUCHON,%20JEAN&rft.date=1992-06-01&rft.volume=50&rft.issue=2&rft.spage=235&rft.epage=255&rft.pages=235-255&rft.issn=0033-569X&rft.eissn=1552-4485&rft.coden=QAMAAY&rft_id=info:doi/10.1090/qam/1162274&rft_dat=%3Cjstor_cross%3E43637770%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43637770&rfr_iscdi=true |