RELAXATION OF EULER EQUATIONS AND HYDRODYNAMIC INSTABILITIES

We present a relaxed version of incompressible Euler equations that permits foliated flows involving two velocities. These relaxed equations allow a two-phase evolution of some vortex sheets as an alternative to discontinuous solutions of Euler equations. In the case of two perfect fluids of differe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quarterly of applied mathematics 1992-06, Vol.50 (2), p.235-255
Hauptverfasser: DUCHON, JEAN, ROBERT, RAOUL
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 255
container_issue 2
container_start_page 235
container_title Quarterly of applied mathematics
container_volume 50
creator DUCHON, JEAN
ROBERT, RAOUL
description We present a relaxed version of incompressible Euler equations that permits foliated flows involving two velocities. These relaxed equations allow a two-phase evolution of some vortex sheets as an alternative to discontinuous solutions of Euler equations. In the case of two perfect fluids of different densities superposed one over the other, we show that this relaxation process yields a linearly well-posed two-phase solution.
doi_str_mv 10.1090/qam/1162274
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_qam_1162274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43637770</jstor_id><sourcerecordid>43637770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3100ff30db285024448f62380a344fea0008ecdb502a08001feaecd281d3406d3</originalsourceid><addsrcrecordid>eNpFj81PwkAQxTdGEyt68myyB2-mMruz_Uq8VCiySW0jtAmcmqXtJhAQ6HLxv3e1RE-TN-83H4-QewbPDCIYHtVuyJjPeSAuiMM8j7tChN4lcQAQXc-PFtfkxpiNldYFh7zMkjRexIXMM5pPaFKmyYwmH-VvZ07jbEyny_EsHy-z-F2OqMzmRfwqU1nIZH5LrrTamvbuXAeknCTFaOqm-ZscxalbI4tOLjIArRGaFQ894MK-pH2OISgUQrcKAMK2blbWUxACMNuzmoesQQF-gwPy1O-tu70xXaurQ7feqe6rYlD9BK9s8Ooc3NKPPX1QplZb3anPem3-Rux5gYFvsYce25jTvvu30ccgCAC_AVpOW0E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>RELAXATION OF EULER EQUATIONS AND HYDRODYNAMIC INSTABILITIES</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>American Mathematical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>DUCHON, JEAN ; ROBERT, RAOUL</creator><creatorcontrib>DUCHON, JEAN ; ROBERT, RAOUL</creatorcontrib><description>We present a relaxed version of incompressible Euler equations that permits foliated flows involving two velocities. These relaxed equations allow a two-phase evolution of some vortex sheets as an alternative to discontinuous solutions of Euler equations. In the case of two perfect fluids of different densities superposed one over the other, we show that this relaxation process yields a linearly well-posed two-phase solution.</description><identifier>ISSN: 0033-569X</identifier><identifier>EISSN: 1552-4485</identifier><identifier>DOI: 10.1090/qam/1162274</identifier><identifier>CODEN: QAMAAY</identifier><language>eng</language><publisher>Providence, RI: Brown University</publisher><subject>Analytics ; Cauchy problem ; Conservation equations ; Curl ; Euler equations ; Exact sciences and technology ; Flow velocity ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; General theory ; Kinetic energy ; Mathematics ; Physics ; Velocity distribution ; Vortex sheets</subject><ispartof>Quarterly of applied mathematics, 1992-06, Vol.50 (2), p.235-255</ispartof><rights>1992 Brown University</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3100ff30db285024448f62380a344fea0008ecdb502a08001feaecd281d3406d3</citedby><cites>FETCH-LOGICAL-c319t-3100ff30db285024448f62380a344fea0008ecdb502a08001feaecd281d3406d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43637770$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43637770$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4444376$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DUCHON, JEAN</creatorcontrib><creatorcontrib>ROBERT, RAOUL</creatorcontrib><title>RELAXATION OF EULER EQUATIONS AND HYDRODYNAMIC INSTABILITIES</title><title>Quarterly of applied mathematics</title><description>We present a relaxed version of incompressible Euler equations that permits foliated flows involving two velocities. These relaxed equations allow a two-phase evolution of some vortex sheets as an alternative to discontinuous solutions of Euler equations. In the case of two perfect fluids of different densities superposed one over the other, we show that this relaxation process yields a linearly well-posed two-phase solution.</description><subject>Analytics</subject><subject>Cauchy problem</subject><subject>Conservation equations</subject><subject>Curl</subject><subject>Euler equations</subject><subject>Exact sciences and technology</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General theory</subject><subject>Kinetic energy</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Velocity distribution</subject><subject>Vortex sheets</subject><issn>0033-569X</issn><issn>1552-4485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNpFj81PwkAQxTdGEyt68myyB2-mMruz_Uq8VCiySW0jtAmcmqXtJhAQ6HLxv3e1RE-TN-83H4-QewbPDCIYHtVuyJjPeSAuiMM8j7tChN4lcQAQXc-PFtfkxpiNldYFh7zMkjRexIXMM5pPaFKmyYwmH-VvZ07jbEyny_EsHy-z-F2OqMzmRfwqU1nIZH5LrrTamvbuXAeknCTFaOqm-ZscxalbI4tOLjIArRGaFQ894MK-pH2OISgUQrcKAMK2blbWUxACMNuzmoesQQF-gwPy1O-tu70xXaurQ7feqe6rYlD9BK9s8Ooc3NKPPX1QplZb3anPem3-Rux5gYFvsYce25jTvvu30ccgCAC_AVpOW0E</recordid><startdate>19920601</startdate><enddate>19920601</enddate><creator>DUCHON, JEAN</creator><creator>ROBERT, RAOUL</creator><general>Brown University</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19920601</creationdate><title>RELAXATION OF EULER EQUATIONS AND HYDRODYNAMIC INSTABILITIES</title><author>DUCHON, JEAN ; ROBERT, RAOUL</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3100ff30db285024448f62380a344fea0008ecdb502a08001feaecd281d3406d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Analytics</topic><topic>Cauchy problem</topic><topic>Conservation equations</topic><topic>Curl</topic><topic>Euler equations</topic><topic>Exact sciences and technology</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General theory</topic><topic>Kinetic energy</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Velocity distribution</topic><topic>Vortex sheets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DUCHON, JEAN</creatorcontrib><creatorcontrib>ROBERT, RAOUL</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Quarterly of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DUCHON, JEAN</au><au>ROBERT, RAOUL</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RELAXATION OF EULER EQUATIONS AND HYDRODYNAMIC INSTABILITIES</atitle><jtitle>Quarterly of applied mathematics</jtitle><date>1992-06-01</date><risdate>1992</risdate><volume>50</volume><issue>2</issue><spage>235</spage><epage>255</epage><pages>235-255</pages><issn>0033-569X</issn><eissn>1552-4485</eissn><coden>QAMAAY</coden><abstract>We present a relaxed version of incompressible Euler equations that permits foliated flows involving two velocities. These relaxed equations allow a two-phase evolution of some vortex sheets as an alternative to discontinuous solutions of Euler equations. In the case of two perfect fluids of different densities superposed one over the other, we show that this relaxation process yields a linearly well-posed two-phase solution.</abstract><cop>Providence, RI</cop><pub>Brown University</pub><doi>10.1090/qam/1162274</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0033-569X
ispartof Quarterly of applied mathematics, 1992-06, Vol.50 (2), p.235-255
issn 0033-569X
1552-4485
language eng
recordid cdi_crossref_primary_10_1090_qam_1162274
source American Mathematical Society Publications (Freely Accessible); JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; American Mathematical Society Journals; EZB-FREE-00999 freely available EZB journals
subjects Analytics
Cauchy problem
Conservation equations
Curl
Euler equations
Exact sciences and technology
Flow velocity
Fluid dynamics
Fundamental areas of phenomenology (including applications)
General theory
Kinetic energy
Mathematics
Physics
Velocity distribution
Vortex sheets
title RELAXATION OF EULER EQUATIONS AND HYDRODYNAMIC INSTABILITIES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RELAXATION%20OF%20EULER%20EQUATIONS%20AND%20HYDRODYNAMIC%20INSTABILITIES&rft.jtitle=Quarterly%20of%20applied%20mathematics&rft.au=DUCHON,%20JEAN&rft.date=1992-06-01&rft.volume=50&rft.issue=2&rft.spage=235&rft.epage=255&rft.pages=235-255&rft.issn=0033-569X&rft.eissn=1552-4485&rft.coden=QAMAAY&rft_id=info:doi/10.1090/qam/1162274&rft_dat=%3Cjstor_cross%3E43637770%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43637770&rfr_iscdi=true