Comparison of persistent singular and Čech homology for locally connected filtrations

We show that the interleaving distance between the persistent singular homology and the persistent Čech homology of a homologically locally connected filtration consisting of paracompact Hausdorff spaces is 0.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2024-11
1. Verfasser: Schmahl, Maximilian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Proceedings of the American Mathematical Society
container_volume
creator Schmahl, Maximilian
description We show that the interleaving distance between the persistent singular homology and the persistent Čech homology of a homologically locally connected filtration consisting of paracompact Hausdorff spaces is 0.
doi_str_mv 10.1090/proc/17008
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_17008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_proc_17008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c120t-794755a7525e47ec5363dc767a3823cdb8b6fd9638f55438f147588ba64923043</originalsourceid><addsrcrecordid>eNotkM1KxDAAhIMoWFcvPkHOQt2kaf6OUvyDBS_qtaRpshtJk5LEQ9_Bx_LB7KqXGQaGYfgAuMboFiOJtnOKeos5QuIEVBgJUTPRsFNQIYSaWkoiz8FFzh9rxLLlFXjv4jSr5HIMMFo4m5RdLiYUmF3Yf3qVoAoj_P4y-gAPcYo-7hdoY4I-auX9AnUMwehiRmidL0kVF0O-BGdW-Wyu_n0D3h7uX7unevfy-Nzd7WqNG1Rqvn6gVHHaUNNyoylhZNSccUVEQ_Q4iIHZUTIiLKXtqnjtCzEo1sqGoJZswM3frk4x52RsPyc3qbT0GPVHIv2RSP9LhPwAbjNVow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comparison of persistent singular and Čech homology for locally connected filtrations</title><source>American Mathematical Society Publications</source><creator>Schmahl, Maximilian</creator><creatorcontrib>Schmahl, Maximilian</creatorcontrib><description>We show that the interleaving distance between the persistent singular homology and the persistent Čech homology of a homologically locally connected filtration consisting of paracompact Hausdorff spaces is 0.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/17008</identifier><language>eng</language><ispartof>Proceedings of the American Mathematical Society, 2024-11</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c120t-794755a7525e47ec5363dc767a3823cdb8b6fd9638f55438f147588ba64923043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Schmahl, Maximilian</creatorcontrib><title>Comparison of persistent singular and Čech homology for locally connected filtrations</title><title>Proceedings of the American Mathematical Society</title><description>We show that the interleaving distance between the persistent singular homology and the persistent Čech homology of a homologically locally connected filtration consisting of paracompact Hausdorff spaces is 0.</description><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkM1KxDAAhIMoWFcvPkHOQt2kaf6OUvyDBS_qtaRpshtJk5LEQ9_Bx_LB7KqXGQaGYfgAuMboFiOJtnOKeos5QuIEVBgJUTPRsFNQIYSaWkoiz8FFzh9rxLLlFXjv4jSr5HIMMFo4m5RdLiYUmF3Yf3qVoAoj_P4y-gAPcYo-7hdoY4I-auX9AnUMwehiRmidL0kVF0O-BGdW-Wyu_n0D3h7uX7unevfy-Nzd7WqNG1Rqvn6gVHHaUNNyoylhZNSccUVEQ_Q4iIHZUTIiLKXtqnjtCzEo1sqGoJZswM3frk4x52RsPyc3qbT0GPVHIv2RSP9LhPwAbjNVow</recordid><startdate>20241104</startdate><enddate>20241104</enddate><creator>Schmahl, Maximilian</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241104</creationdate><title>Comparison of persistent singular and Čech homology for locally connected filtrations</title><author>Schmahl, Maximilian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c120t-794755a7525e47ec5363dc767a3823cdb8b6fd9638f55438f147588ba64923043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmahl, Maximilian</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmahl, Maximilian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of persistent singular and Čech homology for locally connected filtrations</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2024-11-04</date><risdate>2024</risdate><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>We show that the interleaving distance between the persistent singular homology and the persistent Čech homology of a homologically locally connected filtration consisting of paracompact Hausdorff spaces is 0.</abstract><doi>10.1090/proc/17008</doi></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2024-11
issn 0002-9939
1088-6826
language eng
recordid cdi_crossref_primary_10_1090_proc_17008
source American Mathematical Society Publications
title Comparison of persistent singular and Čech homology for locally connected filtrations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A24%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20persistent%20singular%20and%20%C4%8Cech%20homology%20for%20locally%20connected%20filtrations&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Schmahl,%20Maximilian&rft.date=2024-11-04&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/17008&rft_dat=%3Ccrossref%3E10_1090_proc_17008%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true