A simply connected universal fibration with unique path lifting over a Peano continuum with non-simply connected universal covering space

We present a 2-dimensional Peano continuum T ⊆ R 3 \mathbb {T}\subseteq \mathbb {R}^3 with the following properties: (1) There is a universal covering projection q : T ¯ → T q:\overline {\mathbb {T}}\rightarrow \mathbb {T} with uncountable fundamental group π 1 ( T ¯ ) \pi _1(\overline {\mathbb {T}}...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2025-01, Vol.153 (1), p.371-379
Hauptverfasser: Brazas, Jeremy, Fischer, Hanspeter
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 379
container_issue 1
container_start_page 371
container_title Proceedings of the American Mathematical Society
container_volume 153
creator Brazas, Jeremy
Fischer, Hanspeter
description We present a 2-dimensional Peano continuum T ⊆ R 3 \mathbb {T}\subseteq \mathbb {R}^3 with the following properties: (1) There is a universal covering projection q : T ¯ → T q:\overline {\mathbb {T}}\rightarrow \mathbb {T} with uncountable fundamental group π 1 ( T ¯ ) \pi _1(\overline {\mathbb {T}}) ; (2) For every 1 ≠ [ α ¯ ] ∈ π 1 ( T ¯ , ∗ ) 1\not =[\overline {\alpha }]\in \pi _1(\overline {\mathbb {T}},\ast ) , there is a covering projection r : ( E , e ) → ( T ¯ , ∗ ) r:(E,e)\rightarrow (\overline {\mathbb {T}},\ast ) such that [ α ¯ ] ∉ r # π 1 ( E , e ) [\overline {\alpha }]\not \in r_\#\pi _1(E,e) ; (3) There is no universal covering projection r : E → T ¯ r:E\rightarrow \overline {\mathbb {T}} ; (4) The universal object p : T ~ → T p:\widetilde {\mathbb {T}}\rightarrow \mathbb {T} in the category of fibrations with unique path lifting (and path-connected total space) over T \mathbb {T} has trivial fundamental group π 1 ( T ~ ) = 1 \pi _1(\widetilde {\mathbb {T}})=1 ; (5) p : T ~ → T p:\widetilde {\mathbb {T}}\rightarrow \mathbb {T} is not a path component of an inverse limit of covering projections over T \mathbb {T} .
doi_str_mv 10.1090/proc/16942
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_16942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_proc_16942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c156t-ebd2d57a118dd77b781e437a67e4cb9f40534219fbdb7fb23a27811d2356ac453</originalsourceid><addsrcrecordid>eNp9kLlOxDAURS0EEmGg4QtcI4XxljguRyM2aSQooI68glFiBzsBzSfw1yQMNdXb7jvFAeASo2uMBFoPKeo1rgUjR6DAqGnKuiH1MSgQQqQUgopTcJbz-zxiwXgBvjcw-37o9lDHEKwerYFT8J82ZdlB51WSo48BfvnxbTl8TBYOcu4770YfXmGco1DCJytDXBjzcpr6Qz7EUP5D18vvwsiD1PYcnDjZZXvxV1fg5fbmeXtf7h7vHrabXalxVY-lVYaYikuMG2M4V7zBllEua26ZVsIxVFFGsHDKKO4UoZLMEWwIrWqpWUVX4OrA1SnmnKxrh-R7mfYtRu0isV0ktr8S6Q9ZA2l7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A simply connected universal fibration with unique path lifting over a Peano continuum with non-simply connected universal covering space</title><source>American Mathematical Society Publications</source><creator>Brazas, Jeremy ; Fischer, Hanspeter</creator><creatorcontrib>Brazas, Jeremy ; Fischer, Hanspeter</creatorcontrib><description>We present a 2-dimensional Peano continuum T ⊆ R 3 \mathbb {T}\subseteq \mathbb {R}^3 with the following properties: (1) There is a universal covering projection q : T ¯ → T q:\overline {\mathbb {T}}\rightarrow \mathbb {T} with uncountable fundamental group π 1 ( T ¯ ) \pi _1(\overline {\mathbb {T}}) ; (2) For every 1 ≠ [ α ¯ ] ∈ π 1 ( T ¯ , ∗ ) 1\not =[\overline {\alpha }]\in \pi _1(\overline {\mathbb {T}},\ast ) , there is a covering projection r : ( E , e ) → ( T ¯ , ∗ ) r:(E,e)\rightarrow (\overline {\mathbb {T}},\ast ) such that [ α ¯ ] ∉ r # π 1 ( E , e ) [\overline {\alpha }]\not \in r_\#\pi _1(E,e) ; (3) There is no universal covering projection r : E → T ¯ r:E\rightarrow \overline {\mathbb {T}} ; (4) The universal object p : T ~ → T p:\widetilde {\mathbb {T}}\rightarrow \mathbb {T} in the category of fibrations with unique path lifting (and path-connected total space) over T \mathbb {T} has trivial fundamental group π 1 ( T ~ ) = 1 \pi _1(\widetilde {\mathbb {T}})=1 ; (5) p : T ~ → T p:\widetilde {\mathbb {T}}\rightarrow \mathbb {T} is not a path component of an inverse limit of covering projections over T \mathbb {T} .</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/16942</identifier><language>eng</language><ispartof>Proceedings of the American Mathematical Society, 2025-01, Vol.153 (1), p.371-379</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c156t-ebd2d57a118dd77b781e437a67e4cb9f40534219fbdb7fb23a27811d2356ac453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Brazas, Jeremy</creatorcontrib><creatorcontrib>Fischer, Hanspeter</creatorcontrib><title>A simply connected universal fibration with unique path lifting over a Peano continuum with non-simply connected universal covering space</title><title>Proceedings of the American Mathematical Society</title><description>We present a 2-dimensional Peano continuum T ⊆ R 3 \mathbb {T}\subseteq \mathbb {R}^3 with the following properties: (1) There is a universal covering projection q : T ¯ → T q:\overline {\mathbb {T}}\rightarrow \mathbb {T} with uncountable fundamental group π 1 ( T ¯ ) \pi _1(\overline {\mathbb {T}}) ; (2) For every 1 ≠ [ α ¯ ] ∈ π 1 ( T ¯ , ∗ ) 1\not =[\overline {\alpha }]\in \pi _1(\overline {\mathbb {T}},\ast ) , there is a covering projection r : ( E , e ) → ( T ¯ , ∗ ) r:(E,e)\rightarrow (\overline {\mathbb {T}},\ast ) such that [ α ¯ ] ∉ r # π 1 ( E , e ) [\overline {\alpha }]\not \in r_\#\pi _1(E,e) ; (3) There is no universal covering projection r : E → T ¯ r:E\rightarrow \overline {\mathbb {T}} ; (4) The universal object p : T ~ → T p:\widetilde {\mathbb {T}}\rightarrow \mathbb {T} in the category of fibrations with unique path lifting (and path-connected total space) over T \mathbb {T} has trivial fundamental group π 1 ( T ~ ) = 1 \pi _1(\widetilde {\mathbb {T}})=1 ; (5) p : T ~ → T p:\widetilde {\mathbb {T}}\rightarrow \mathbb {T} is not a path component of an inverse limit of covering projections over T \mathbb {T} .</description><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kLlOxDAURS0EEmGg4QtcI4XxljguRyM2aSQooI68glFiBzsBzSfw1yQMNdXb7jvFAeASo2uMBFoPKeo1rgUjR6DAqGnKuiH1MSgQQqQUgopTcJbz-zxiwXgBvjcw-37o9lDHEKwerYFT8J82ZdlB51WSo48BfvnxbTl8TBYOcu4770YfXmGco1DCJytDXBjzcpr6Qz7EUP5D18vvwsiD1PYcnDjZZXvxV1fg5fbmeXtf7h7vHrabXalxVY-lVYaYikuMG2M4V7zBllEua26ZVsIxVFFGsHDKKO4UoZLMEWwIrWqpWUVX4OrA1SnmnKxrh-R7mfYtRu0isV0ktr8S6Q9ZA2l7</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Brazas, Jeremy</creator><creator>Fischer, Hanspeter</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202501</creationdate><title>A simply connected universal fibration with unique path lifting over a Peano continuum with non-simply connected universal covering space</title><author>Brazas, Jeremy ; Fischer, Hanspeter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c156t-ebd2d57a118dd77b781e437a67e4cb9f40534219fbdb7fb23a27811d2356ac453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brazas, Jeremy</creatorcontrib><creatorcontrib>Fischer, Hanspeter</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brazas, Jeremy</au><au>Fischer, Hanspeter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simply connected universal fibration with unique path lifting over a Peano continuum with non-simply connected universal covering space</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2025-01</date><risdate>2025</risdate><volume>153</volume><issue>1</issue><spage>371</spage><epage>379</epage><pages>371-379</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>We present a 2-dimensional Peano continuum T ⊆ R 3 \mathbb {T}\subseteq \mathbb {R}^3 with the following properties: (1) There is a universal covering projection q : T ¯ → T q:\overline {\mathbb {T}}\rightarrow \mathbb {T} with uncountable fundamental group π 1 ( T ¯ ) \pi _1(\overline {\mathbb {T}}) ; (2) For every 1 ≠ [ α ¯ ] ∈ π 1 ( T ¯ , ∗ ) 1\not =[\overline {\alpha }]\in \pi _1(\overline {\mathbb {T}},\ast ) , there is a covering projection r : ( E , e ) → ( T ¯ , ∗ ) r:(E,e)\rightarrow (\overline {\mathbb {T}},\ast ) such that [ α ¯ ] ∉ r # π 1 ( E , e ) [\overline {\alpha }]\not \in r_\#\pi _1(E,e) ; (3) There is no universal covering projection r : E → T ¯ r:E\rightarrow \overline {\mathbb {T}} ; (4) The universal object p : T ~ → T p:\widetilde {\mathbb {T}}\rightarrow \mathbb {T} in the category of fibrations with unique path lifting (and path-connected total space) over T \mathbb {T} has trivial fundamental group π 1 ( T ~ ) = 1 \pi _1(\widetilde {\mathbb {T}})=1 ; (5) p : T ~ → T p:\widetilde {\mathbb {T}}\rightarrow \mathbb {T} is not a path component of an inverse limit of covering projections over T \mathbb {T} .</abstract><doi>10.1090/proc/16942</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2025-01, Vol.153 (1), p.371-379
issn 0002-9939
1088-6826
language eng
recordid cdi_crossref_primary_10_1090_proc_16942
source American Mathematical Society Publications
title A simply connected universal fibration with unique path lifting over a Peano continuum with non-simply connected universal covering space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A08%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simply%20connected%20universal%20fibration%20with%20unique%20path%20lifting%20over%20a%20Peano%20continuum%20with%20non-simply%20connected%20universal%20covering%20space&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Brazas,%20Jeremy&rft.date=2025-01&rft.volume=153&rft.issue=1&rft.spage=371&rft.epage=379&rft.pages=371-379&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/16942&rft_dat=%3Ccrossref%3E10_1090_proc_16942%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true