Cup product in bounded cohomology of negatively curved manifolds
Let M be a negatively curved compact Riemannian manifold with (possibly empty) convex boundary. Every closed differential 2-form \xi \in \Omega ^2(M) defines a bounded cocycle c_\xi \in C_b^2(M) by integrating \xi over straightened 2-simplices. In particular Barge and Ghys [Invent. Math. 92 (1988),...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2023-06, Vol.151 (6), p.2707, Article 2707 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 2707 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 151 |
creator | Marasco, Domenico |
description | Let M be a negatively curved compact Riemannian manifold with (possibly empty) convex boundary. Every closed differential 2-form \xi \in \Omega ^2(M) defines a bounded cocycle c_\xi \in C_b^2(M) by integrating \xi over straightened 2-simplices. In particular Barge and Ghys [Invent. Math. 92 (1988), pp. 509–526] proved that, when M is a closed hyperbolic surface, \Omega ^2(M) injects this way in H_b^2(M) as an infinite dimensional subspace. We show that the cup product of any class of the form [c_\xi ], where \xi is an exact differential 2-form, and any other bounded cohomology class is trivial in H_b^{\bullet }(M). |
doi_str_mv | 10.1090/proc/16328 |
format | Article |
fullrecord | <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_16328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_proc_16328</sourcerecordid><originalsourceid>FETCH-LOGICAL-a227t-ed7c5e9ff62d278ef0e740a63b4038570b441a0f67d32815695163ba819bd9ab3</originalsourceid><addsrcrecordid>eNp9j01LxDAQhoMoWFcv_oJcvAh1J2mbj5uyuCoseNFzSfOxVtqmJO3C_nuzricRT8Mw7_MyD0LXBO4ISFiOweslYQUVJygjIETOBGWnKAMAmktZyHN0EeNnWokseYbuV_OIE2VmPeF2wI2fB2MN1v7D977z2z32Dg92q6Z2Z7s91nPYpXuvhtb5zsRLdOZUF-3Vz1yg9_Xj2-o537w-vaweNrmilE-5NVxXVjrHqKFcWAeWl6BY0ZRQiIpDU5ZEgWPcpOdJxWSVNBoliGyMVE2xQLfHXh18jMG6egxtr8K-JlAf3OuDe_3tnsLwK6zbKRn4YQqq7f5Gbo6I6uN_1V9qS2nZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cup product in bounded cohomology of negatively curved manifolds</title><source>American Mathematical Society Journals</source><creator>Marasco, Domenico</creator><creatorcontrib>Marasco, Domenico</creatorcontrib><description>Let M be a negatively curved compact Riemannian manifold with (possibly empty) convex boundary. Every closed differential 2-form \xi \in \Omega ^2(M) defines a bounded cocycle c_\xi \in C_b^2(M) by integrating \xi over straightened 2-simplices. In particular Barge and Ghys [Invent. Math. 92 (1988), pp. 509–526] proved that, when M is a closed hyperbolic surface, \Omega ^2(M) injects this way in H_b^2(M) as an infinite dimensional subspace. We show that the cup product of any class of the form [c_\xi ], where \xi is an exact differential 2-form, and any other bounded cohomology class is trivial in H_b^{\bullet }(M).</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/16328</identifier><language>eng</language><ispartof>Proceedings of the American Mathematical Society, 2023-06, Vol.151 (6), p.2707, Article 2707</ispartof><rights>Copyright 2023, by Domenico Marasco</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a227t-ed7c5e9ff62d278ef0e740a63b4038570b441a0f67d32815695163ba819bd9ab3</citedby><cites>FETCH-LOGICAL-a227t-ed7c5e9ff62d278ef0e740a63b4038570b441a0f67d32815695163ba819bd9ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/proc/2023-151-06/S0002-9939-2023-16328-5/S0002-9939-2023-16328-5.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/proc/2023-151-06/S0002-9939-2023-16328-5/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,777,781,23309,27905,27906,77585,77595</link.rule.ids></links><search><creatorcontrib>Marasco, Domenico</creatorcontrib><title>Cup product in bounded cohomology of negatively curved manifolds</title><title>Proceedings of the American Mathematical Society</title><description>Let M be a negatively curved compact Riemannian manifold with (possibly empty) convex boundary. Every closed differential 2-form \xi \in \Omega ^2(M) defines a bounded cocycle c_\xi \in C_b^2(M) by integrating \xi over straightened 2-simplices. In particular Barge and Ghys [Invent. Math. 92 (1988), pp. 509–526] proved that, when M is a closed hyperbolic surface, \Omega ^2(M) injects this way in H_b^2(M) as an infinite dimensional subspace. We show that the cup product of any class of the form [c_\xi ], where \xi is an exact differential 2-form, and any other bounded cohomology class is trivial in H_b^{\bullet }(M).</description><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9j01LxDAQhoMoWFcv_oJcvAh1J2mbj5uyuCoseNFzSfOxVtqmJO3C_nuzricRT8Mw7_MyD0LXBO4ISFiOweslYQUVJygjIETOBGWnKAMAmktZyHN0EeNnWokseYbuV_OIE2VmPeF2wI2fB2MN1v7D977z2z32Dg92q6Z2Z7s91nPYpXuvhtb5zsRLdOZUF-3Vz1yg9_Xj2-o537w-vaweNrmilE-5NVxXVjrHqKFcWAeWl6BY0ZRQiIpDU5ZEgWPcpOdJxWSVNBoliGyMVE2xQLfHXh18jMG6egxtr8K-JlAf3OuDe_3tnsLwK6zbKRn4YQqq7f5Gbo6I6uN_1V9qS2nZ</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Marasco, Domenico</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>Cup product in bounded cohomology of negatively curved manifolds</title><author>Marasco, Domenico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a227t-ed7c5e9ff62d278ef0e740a63b4038570b441a0f67d32815695163ba819bd9ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marasco, Domenico</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marasco, Domenico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cup product in bounded cohomology of negatively curved manifolds</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>151</volume><issue>6</issue><spage>2707</spage><pages>2707-</pages><artnum>2707</artnum><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>Let M be a negatively curved compact Riemannian manifold with (possibly empty) convex boundary. Every closed differential 2-form \xi \in \Omega ^2(M) defines a bounded cocycle c_\xi \in C_b^2(M) by integrating \xi over straightened 2-simplices. In particular Barge and Ghys [Invent. Math. 92 (1988), pp. 509–526] proved that, when M is a closed hyperbolic surface, \Omega ^2(M) injects this way in H_b^2(M) as an infinite dimensional subspace. We show that the cup product of any class of the form [c_\xi ], where \xi is an exact differential 2-form, and any other bounded cohomology class is trivial in H_b^{\bullet }(M).</abstract><doi>10.1090/proc/16328</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2023-06, Vol.151 (6), p.2707, Article 2707 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_crossref_primary_10_1090_proc_16328 |
source | American Mathematical Society Journals |
title | Cup product in bounded cohomology of negatively curved manifolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A16%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cup%20product%20in%20bounded%20cohomology%20of%20negatively%20curved%20manifolds&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Marasco,%20Domenico&rft.date=2023-06-01&rft.volume=151&rft.issue=6&rft.spage=2707&rft.pages=2707-&rft.artnum=2707&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/16328&rft_dat=%3Cams_cross%3E10_1090_proc_16328%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |