Uniformization and internal absoluteness

Measurability with respect to ideals is tightly connected with absoluteness principles for certain forcing notions. We study a uniformization principle that postulates the existence of a uniformizing function on a large set, relative to a given ideal. We prove that for all \sigma-ideals I such that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2023-07, Vol.151 (7), p.3089-3102
Hauptverfasser: Müller, Sandra, Schlicht, Philipp
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3102
container_issue 7
container_start_page 3089
container_title Proceedings of the American Mathematical Society
container_volume 151
creator Müller, Sandra
Schlicht, Philipp
description Measurability with respect to ideals is tightly connected with absoluteness principles for certain forcing notions. We study a uniformization principle that postulates the existence of a uniformizing function on a large set, relative to a given ideal. We prove that for all \sigma-ideals I such that the ideal forcing \mathbb {P}_I of Borel sets modulo I is proper, this uniformization principle is equivalent to an absoluteness principle for projective formulas with respect to \mathbb {P}_I that we call internal absoluteness . In addition, we show that it is equivalent to measurability with respect to I together with 1-step absoluteness for the poset \mathbb {P}_I. These equivalences are new even for Cohen and random forcing and they are, to the best of our knowledge, the first precise equivalences between regularity and absoluteness beyond the second level of the projective hierarchy.
doi_str_mv 10.1090/proc/16155
format Article
fullrecord <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_16155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_proc_16155</sourcerecordid><originalsourceid>FETCH-LOGICAL-a220t-b69647944914e38451a56abe6fd51f17b33f1adf863f2e807233805d3345a02b3</originalsourceid><addsrcrecordid>eNp9j0tLxDAURoMoWEc3_oJuBBHq3JtXk6UMvmDAjbMuN9MEIm06JHWhv94Zx7Wrjw8OBw5j1wj3CBaWuzxtl6hRqRNWIRjTaMP1KasAgDfWCnvOLkr52F-0sq3Y7SbFMOUxftMcp1RT6uuYZp8TDTW5Mg2fs0--lEt2Fmgo_upvF2zz9Pi-emnWb8-vq4d1Q5zD3DhttWytlBalF0YqJKXJeR16hQFbJ0RA6oPRInBvoOVCGFC9EFIRcCcW7O7o3eaplOxDt8txpPzVIXSHxu7Q2P027uGbI0xj-Y_7AR_0T_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uniformization and internal absoluteness</title><source>American Mathematical Society Publications</source><creator>Müller, Sandra ; Schlicht, Philipp</creator><creatorcontrib>Müller, Sandra ; Schlicht, Philipp</creatorcontrib><description>Measurability with respect to ideals is tightly connected with absoluteness principles for certain forcing notions. We study a uniformization principle that postulates the existence of a uniformizing function on a large set, relative to a given ideal. We prove that for all \sigma-ideals I such that the ideal forcing \mathbb {P}_I of Borel sets modulo I is proper, this uniformization principle is equivalent to an absoluteness principle for projective formulas with respect to \mathbb {P}_I that we call internal absoluteness . In addition, we show that it is equivalent to measurability with respect to I together with 1-step absoluteness for the poset \mathbb {P}_I. These equivalences are new even for Cohen and random forcing and they are, to the best of our knowledge, the first precise equivalences between regularity and absoluteness beyond the second level of the projective hierarchy.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/16155</identifier><language>eng</language><ispartof>Proceedings of the American Mathematical Society, 2023-07, Vol.151 (7), p.3089-3102</ispartof><rights>Copyright 2023, American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a220t-b69647944914e38451a56abe6fd51f17b33f1adf863f2e807233805d3345a02b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/proc/2023-151-07/S0002-9939-2023-16155-9/S0002-9939-2023-16155-9.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/proc/2023-151-07/S0002-9939-2023-16155-9/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,777,781,23309,27905,27906,77585,77595</link.rule.ids></links><search><creatorcontrib>Müller, Sandra</creatorcontrib><creatorcontrib>Schlicht, Philipp</creatorcontrib><title>Uniformization and internal absoluteness</title><title>Proceedings of the American Mathematical Society</title><description>Measurability with respect to ideals is tightly connected with absoluteness principles for certain forcing notions. We study a uniformization principle that postulates the existence of a uniformizing function on a large set, relative to a given ideal. We prove that for all \sigma-ideals I such that the ideal forcing \mathbb {P}_I of Borel sets modulo I is proper, this uniformization principle is equivalent to an absoluteness principle for projective formulas with respect to \mathbb {P}_I that we call internal absoluteness . In addition, we show that it is equivalent to measurability with respect to I together with 1-step absoluteness for the poset \mathbb {P}_I. These equivalences are new even for Cohen and random forcing and they are, to the best of our knowledge, the first precise equivalences between regularity and absoluteness beyond the second level of the projective hierarchy.</description><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9j0tLxDAURoMoWEc3_oJuBBHq3JtXk6UMvmDAjbMuN9MEIm06JHWhv94Zx7Wrjw8OBw5j1wj3CBaWuzxtl6hRqRNWIRjTaMP1KasAgDfWCnvOLkr52F-0sq3Y7SbFMOUxftMcp1RT6uuYZp8TDTW5Mg2fs0--lEt2Fmgo_upvF2zz9Pi-emnWb8-vq4d1Q5zD3DhttWytlBalF0YqJKXJeR16hQFbJ0RA6oPRInBvoOVCGFC9EFIRcCcW7O7o3eaplOxDt8txpPzVIXSHxu7Q2P027uGbI0xj-Y_7AR_0T_A</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Müller, Sandra</creator><creator>Schlicht, Philipp</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230701</creationdate><title>Uniformization and internal absoluteness</title><author>Müller, Sandra ; Schlicht, Philipp</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a220t-b69647944914e38451a56abe6fd51f17b33f1adf863f2e807233805d3345a02b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller, Sandra</creatorcontrib><creatorcontrib>Schlicht, Philipp</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müller, Sandra</au><au>Schlicht, Philipp</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniformization and internal absoluteness</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>151</volume><issue>7</issue><spage>3089</spage><epage>3102</epage><pages>3089-3102</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>Measurability with respect to ideals is tightly connected with absoluteness principles for certain forcing notions. We study a uniformization principle that postulates the existence of a uniformizing function on a large set, relative to a given ideal. We prove that for all \sigma-ideals I such that the ideal forcing \mathbb {P}_I of Borel sets modulo I is proper, this uniformization principle is equivalent to an absoluteness principle for projective formulas with respect to \mathbb {P}_I that we call internal absoluteness . In addition, we show that it is equivalent to measurability with respect to I together with 1-step absoluteness for the poset \mathbb {P}_I. These equivalences are new even for Cohen and random forcing and they are, to the best of our knowledge, the first precise equivalences between regularity and absoluteness beyond the second level of the projective hierarchy.</abstract><doi>10.1090/proc/16155</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2023-07, Vol.151 (7), p.3089-3102
issn 0002-9939
1088-6826
language eng
recordid cdi_crossref_primary_10_1090_proc_16155
source American Mathematical Society Publications
title Uniformization and internal absoluteness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A24%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniformization%20and%20internal%20absoluteness&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=M%C3%BCller,%20Sandra&rft.date=2023-07-01&rft.volume=151&rft.issue=7&rft.spage=3089&rft.epage=3102&rft.pages=3089-3102&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/16155&rft_dat=%3Cams_cross%3E10_1090_proc_16155%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true