Uniformization and internal absoluteness
Measurability with respect to ideals is tightly connected with absoluteness principles for certain forcing notions. We study a uniformization principle that postulates the existence of a uniformizing function on a large set, relative to a given ideal. We prove that for all \sigma-ideals I such that...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2023-07, Vol.151 (7), p.3089-3102 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3102 |
---|---|
container_issue | 7 |
container_start_page | 3089 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 151 |
creator | Müller, Sandra Schlicht, Philipp |
description | Measurability with respect to ideals is tightly connected with absoluteness principles for certain forcing notions. We study a uniformization principle that postulates the existence of a uniformizing function on a large set, relative to a given ideal. We prove that for all \sigma-ideals I such that the ideal forcing \mathbb {P}_I of Borel sets modulo I is proper, this uniformization principle is equivalent to an absoluteness principle for projective formulas with respect to \mathbb {P}_I that we call internal absoluteness . In addition, we show that it is equivalent to measurability with respect to I together with 1-step absoluteness for the poset \mathbb {P}_I. These equivalences are new even for Cohen and random forcing and they are, to the best of our knowledge, the first precise equivalences between regularity and absoluteness beyond the second level of the projective hierarchy. |
doi_str_mv | 10.1090/proc/16155 |
format | Article |
fullrecord | <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_16155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_proc_16155</sourcerecordid><originalsourceid>FETCH-LOGICAL-a220t-b69647944914e38451a56abe6fd51f17b33f1adf863f2e807233805d3345a02b3</originalsourceid><addsrcrecordid>eNp9j0tLxDAURoMoWEc3_oJuBBHq3JtXk6UMvmDAjbMuN9MEIm06JHWhv94Zx7Wrjw8OBw5j1wj3CBaWuzxtl6hRqRNWIRjTaMP1KasAgDfWCnvOLkr52F-0sq3Y7SbFMOUxftMcp1RT6uuYZp8TDTW5Mg2fs0--lEt2Fmgo_upvF2zz9Pi-emnWb8-vq4d1Q5zD3DhttWytlBalF0YqJKXJeR16hQFbJ0RA6oPRInBvoOVCGFC9EFIRcCcW7O7o3eaplOxDt8txpPzVIXSHxu7Q2P027uGbI0xj-Y_7AR_0T_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uniformization and internal absoluteness</title><source>American Mathematical Society Publications</source><creator>Müller, Sandra ; Schlicht, Philipp</creator><creatorcontrib>Müller, Sandra ; Schlicht, Philipp</creatorcontrib><description>Measurability with respect to ideals is tightly connected with absoluteness principles for certain forcing notions. We study a uniformization principle that postulates the existence of a uniformizing function on a large set, relative to a given ideal. We prove that for all \sigma-ideals I such that the ideal forcing \mathbb {P}_I of Borel sets modulo I is proper, this uniformization principle is equivalent to an absoluteness principle for projective formulas with respect to \mathbb {P}_I that we call internal absoluteness . In addition, we show that it is equivalent to measurability with respect to I together with 1-step absoluteness for the poset \mathbb {P}_I. These equivalences are new even for Cohen and random forcing and they are, to the best of our knowledge, the first precise equivalences between regularity and absoluteness beyond the second level of the projective hierarchy.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/16155</identifier><language>eng</language><ispartof>Proceedings of the American Mathematical Society, 2023-07, Vol.151 (7), p.3089-3102</ispartof><rights>Copyright 2023, American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a220t-b69647944914e38451a56abe6fd51f17b33f1adf863f2e807233805d3345a02b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/proc/2023-151-07/S0002-9939-2023-16155-9/S0002-9939-2023-16155-9.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/proc/2023-151-07/S0002-9939-2023-16155-9/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,777,781,23309,27905,27906,77585,77595</link.rule.ids></links><search><creatorcontrib>Müller, Sandra</creatorcontrib><creatorcontrib>Schlicht, Philipp</creatorcontrib><title>Uniformization and internal absoluteness</title><title>Proceedings of the American Mathematical Society</title><description>Measurability with respect to ideals is tightly connected with absoluteness principles for certain forcing notions. We study a uniformization principle that postulates the existence of a uniformizing function on a large set, relative to a given ideal. We prove that for all \sigma-ideals I such that the ideal forcing \mathbb {P}_I of Borel sets modulo I is proper, this uniformization principle is equivalent to an absoluteness principle for projective formulas with respect to \mathbb {P}_I that we call internal absoluteness . In addition, we show that it is equivalent to measurability with respect to I together with 1-step absoluteness for the poset \mathbb {P}_I. These equivalences are new even for Cohen and random forcing and they are, to the best of our knowledge, the first precise equivalences between regularity and absoluteness beyond the second level of the projective hierarchy.</description><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9j0tLxDAURoMoWEc3_oJuBBHq3JtXk6UMvmDAjbMuN9MEIm06JHWhv94Zx7Wrjw8OBw5j1wj3CBaWuzxtl6hRqRNWIRjTaMP1KasAgDfWCnvOLkr52F-0sq3Y7SbFMOUxftMcp1RT6uuYZp8TDTW5Mg2fs0--lEt2Fmgo_upvF2zz9Pi-emnWb8-vq4d1Q5zD3DhttWytlBalF0YqJKXJeR16hQFbJ0RA6oPRInBvoOVCGFC9EFIRcCcW7O7o3eaplOxDt8txpPzVIXSHxu7Q2P027uGbI0xj-Y_7AR_0T_A</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Müller, Sandra</creator><creator>Schlicht, Philipp</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230701</creationdate><title>Uniformization and internal absoluteness</title><author>Müller, Sandra ; Schlicht, Philipp</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a220t-b69647944914e38451a56abe6fd51f17b33f1adf863f2e807233805d3345a02b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller, Sandra</creatorcontrib><creatorcontrib>Schlicht, Philipp</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müller, Sandra</au><au>Schlicht, Philipp</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniformization and internal absoluteness</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>151</volume><issue>7</issue><spage>3089</spage><epage>3102</epage><pages>3089-3102</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>Measurability with respect to ideals is tightly connected with absoluteness principles for certain forcing notions. We study a uniformization principle that postulates the existence of a uniformizing function on a large set, relative to a given ideal. We prove that for all \sigma-ideals I such that the ideal forcing \mathbb {P}_I of Borel sets modulo I is proper, this uniformization principle is equivalent to an absoluteness principle for projective formulas with respect to \mathbb {P}_I that we call internal absoluteness . In addition, we show that it is equivalent to measurability with respect to I together with 1-step absoluteness for the poset \mathbb {P}_I. These equivalences are new even for Cohen and random forcing and they are, to the best of our knowledge, the first precise equivalences between regularity and absoluteness beyond the second level of the projective hierarchy.</abstract><doi>10.1090/proc/16155</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2023-07, Vol.151 (7), p.3089-3102 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_crossref_primary_10_1090_proc_16155 |
source | American Mathematical Society Publications |
title | Uniformization and internal absoluteness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A24%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniformization%20and%20internal%20absoluteness&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=M%C3%BCller,%20Sandra&rft.date=2023-07-01&rft.volume=151&rft.issue=7&rft.spage=3089&rft.epage=3102&rft.pages=3089-3102&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/16155&rft_dat=%3Cams_cross%3E10_1090_proc_16155%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |