Congruent numbers and lower bounds on class numbers of real quadratic fields
We give effective lower bounds on caliber numbers of the parametric family of real quadratic fields \mathbb {Q}(\sqrt {t^4-n^2}) as t varies over positive integers for a congruent number n. Furthermore, we provide lower bounds on class numbers of Richaud-Degert type real quadratic fields of the form...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2022-11, Vol.150 (11), p.4671-4684 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4684 |
---|---|
container_issue | 11 |
container_start_page | 4671 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 150 |
creator | Kim, Jigu Lee, Yoonjin |
description | We give effective lower bounds on caliber numbers of the parametric family of real quadratic fields \mathbb {Q}(\sqrt {t^4-n^2}) as t varies over positive integers for a congruent number n. Furthermore, we provide lower bounds on class numbers of Richaud-Degert type real quadratic fields of the form \mathbb {Q}(\sqrt {n^2k^4-1}) for positive integers k and congruent numbers n whose elliptic curves have algebraic rank greater than 2. |
doi_str_mv | 10.1090/proc/15993 |
format | Article |
fullrecord | <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_15993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_proc_15993</sourcerecordid><originalsourceid>FETCH-LOGICAL-a220t-d926daed51b51538556c1f39c7551e600fc59c47f0ab4108ce4950ebf9f30eb03</originalsourceid><addsrcrecordid>eNp9kMtKxEAQRRtRMI5u_ILeuBHiVCfpJL2U4AsCbnQdKv2QSNI9diWIf2_GEZeuLnU5FNzD2KWAGwEKtrsY9FZIpfIjlgio67Sss_KYJQCQpWutTtkZ0ft6ClVUCWub4N_iYv3M_TL1NhJHb_gYPm3kfVi8IR481yMS_RHB8Whx5B8LmojzoLkb7GjonJ04HMle_OaGvd7fvTSPafv88NTctilmGcypUVlp0BopeilkXktZauFypSsphS0BnJZKF5UD7It1hLaFkmB7p1y-BuQbdn34q2MgitZ1uzhMGL86Ad3eQ7f30P14WOGrA4wT_cd9A7aLXck</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Congruent numbers and lower bounds on class numbers of real quadratic fields</title><source>American Mathematical Society Publications</source><creator>Kim, Jigu ; Lee, Yoonjin</creator><creatorcontrib>Kim, Jigu ; Lee, Yoonjin</creatorcontrib><description>We give effective lower bounds on caliber numbers of the parametric family of real quadratic fields \mathbb {Q}(\sqrt {t^4-n^2}) as t varies over positive integers for a congruent number n. Furthermore, we provide lower bounds on class numbers of Richaud-Degert type real quadratic fields of the form \mathbb {Q}(\sqrt {n^2k^4-1}) for positive integers k and congruent numbers n whose elliptic curves have algebraic rank greater than 2.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/15993</identifier><language>eng</language><ispartof>Proceedings of the American Mathematical Society, 2022-11, Vol.150 (11), p.4671-4684</ispartof><rights>Copyright 2022, American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a220t-d926daed51b51538556c1f39c7551e600fc59c47f0ab4108ce4950ebf9f30eb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/proc/2022-150-11/S0002-9939-2022-15993-0/S0002-9939-2022-15993-0.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/proc/2022-150-11/S0002-9939-2022-15993-0/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23328,27924,27925,77836,77846</link.rule.ids></links><search><creatorcontrib>Kim, Jigu</creatorcontrib><creatorcontrib>Lee, Yoonjin</creatorcontrib><title>Congruent numbers and lower bounds on class numbers of real quadratic fields</title><title>Proceedings of the American Mathematical Society</title><description>We give effective lower bounds on caliber numbers of the parametric family of real quadratic fields \mathbb {Q}(\sqrt {t^4-n^2}) as t varies over positive integers for a congruent number n. Furthermore, we provide lower bounds on class numbers of Richaud-Degert type real quadratic fields of the form \mathbb {Q}(\sqrt {n^2k^4-1}) for positive integers k and congruent numbers n whose elliptic curves have algebraic rank greater than 2.</description><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxEAQRRtRMI5u_ILeuBHiVCfpJL2U4AsCbnQdKv2QSNI9diWIf2_GEZeuLnU5FNzD2KWAGwEKtrsY9FZIpfIjlgio67Sss_KYJQCQpWutTtkZ0ft6ClVUCWub4N_iYv3M_TL1NhJHb_gYPm3kfVi8IR481yMS_RHB8Whx5B8LmojzoLkb7GjonJ04HMle_OaGvd7fvTSPafv88NTctilmGcypUVlp0BopeilkXktZauFypSsphS0BnJZKF5UD7It1hLaFkmB7p1y-BuQbdn34q2MgitZ1uzhMGL86Ad3eQ7f30P14WOGrA4wT_cd9A7aLXck</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Kim, Jigu</creator><creator>Lee, Yoonjin</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221101</creationdate><title>Congruent numbers and lower bounds on class numbers of real quadratic fields</title><author>Kim, Jigu ; Lee, Yoonjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a220t-d926daed51b51538556c1f39c7551e600fc59c47f0ab4108ce4950ebf9f30eb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jigu</creatorcontrib><creatorcontrib>Lee, Yoonjin</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jigu</au><au>Lee, Yoonjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Congruent numbers and lower bounds on class numbers of real quadratic fields</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2022-11-01</date><risdate>2022</risdate><volume>150</volume><issue>11</issue><spage>4671</spage><epage>4684</epage><pages>4671-4684</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>We give effective lower bounds on caliber numbers of the parametric family of real quadratic fields \mathbb {Q}(\sqrt {t^4-n^2}) as t varies over positive integers for a congruent number n. Furthermore, we provide lower bounds on class numbers of Richaud-Degert type real quadratic fields of the form \mathbb {Q}(\sqrt {n^2k^4-1}) for positive integers k and congruent numbers n whose elliptic curves have algebraic rank greater than 2.</abstract><doi>10.1090/proc/15993</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2022-11, Vol.150 (11), p.4671-4684 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_crossref_primary_10_1090_proc_15993 |
source | American Mathematical Society Publications |
title | Congruent numbers and lower bounds on class numbers of real quadratic fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T15%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Congruent%20numbers%20and%20lower%20bounds%20on%20class%20numbers%20of%20real%20quadratic%20fields&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Kim,%20Jigu&rft.date=2022-11-01&rft.volume=150&rft.issue=11&rft.spage=4671&rft.epage=4684&rft.pages=4671-4684&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/15993&rft_dat=%3Cams_cross%3E10_1090_proc_15993%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |