Cruciform regions and a conjecture of Di Francesco
A recent conjecture of Di Francesco states that the number of domino tilings of a certain family of regions on the square lattice is given by a product formula reminiscent of the one giving the number of alternating sign matrices. These regions, denoted Tn\mathcal {T}_n, are obtained by starting wit...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2022-11, Vol.150 (11), p.4655-4670 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4670 |
---|---|
container_issue | 11 |
container_start_page | 4655 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 150 |
creator | Ciucu, Mihai |
description | A recent conjecture of Di Francesco states that the number of domino tilings of a certain family of regions on the square lattice is given by a product formula reminiscent of the one giving the number of alternating sign matrices. These regions, denoted Tn\mathcal {T}_n, are obtained by starting with a square of side-length 2n2n, cutting it in two along a diagonal by a zigzag path with step length two, and gluing to one of the resulting regions half of an Aztec diamond of order n−1n-1. Inspired by the regions Tn\mathcal {T}_n, we construct a family Cm,na,b,c,dC_{m,n}^{a,b,c,d} of cruciform regions generalizing the Aztec diamonds and we prove that their number of domino tilings is given by a simple product formula. Since (as it follows from our results) the number of domino tilings of Tn\mathcal {T}_n is a divisor of the number of tilings of the cruciform region C2n−1,2n−1n−1,n,n,n−2C_{2n-1,2n-1}^{n-1,n,n,n-2}, the special case of our formula corresponding to the latter can be viewed as partial progress towards proving Di Francesco’s conjecture. |
doi_str_mv | 10.1090/proc/15984 |
format | Article |
fullrecord | <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_15984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_proc_15984</sourcerecordid><originalsourceid>FETCH-LOGICAL-a220t-d18ae493a76d63d29ded044e3e716afa3e0c4a5f2fb87b1a8cfa7045b091b2a33</originalsourceid><addsrcrecordid>eNp9j81Kw0AURgdRMFY3PsFs3Aixd36SzCwlWhUK3dR1uJm5IykmU2bahW9va7t29fHB4cBh7F7AkwAL822Kbi4qa_QFKwQYU9ZG1pesAABZWqvsNbvJeXO4wuqmYLJNezeEmEae6GuIU-Y4eY7cxWlDbrdPxGPgLwNfJJwcZRdv2VXA70x3552xz8Xrun0vl6u3j_Z5WaKUsCu9MEjaKmxqXysvrScPWpOiRtQYUBE4jVWQoTdNL9C4gA3oqgcreolKzdjjyetSzDlR6LZpGDH9dAK6Y213rO3-ag_wwwnGMf_H_QLPYFQo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cruciform regions and a conjecture of Di Francesco</title><source>American Mathematical Society Publications</source><creator>Ciucu, Mihai</creator><creatorcontrib>Ciucu, Mihai</creatorcontrib><description>A recent conjecture of Di Francesco states that the number of domino tilings of a certain family of regions on the square lattice is given by a product formula reminiscent of the one giving the number of alternating sign matrices. These regions, denoted Tn\mathcal {T}_n, are obtained by starting with a square of side-length 2n2n, cutting it in two along a diagonal by a zigzag path with step length two, and gluing to one of the resulting regions half of an Aztec diamond of order n−1n-1. Inspired by the regions Tn\mathcal {T}_n, we construct a family Cm,na,b,c,dC_{m,n}^{a,b,c,d} of cruciform regions generalizing the Aztec diamonds and we prove that their number of domino tilings is given by a simple product formula. Since (as it follows from our results) the number of domino tilings of Tn\mathcal {T}_n is a divisor of the number of tilings of the cruciform region C2n−1,2n−1n−1,n,n,n−2C_{2n-1,2n-1}^{n-1,n,n,n-2}, the special case of our formula corresponding to the latter can be viewed as partial progress towards proving Di Francesco’s conjecture.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/15984</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Research article</subject><ispartof>Proceedings of the American Mathematical Society, 2022-11, Vol.150 (11), p.4655-4670</ispartof><rights>Copyright 2022 American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a220t-d18ae493a76d63d29ded044e3e716afa3e0c4a5f2fb87b1a8cfa7045b091b2a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/proc/2022-150-11/S0002-9939-2022-15984-X/S0002-9939-2022-15984-X.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/proc/2022-150-11/S0002-9939-2022-15984-X/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,776,780,23308,27903,27904,77582,77592</link.rule.ids></links><search><creatorcontrib>Ciucu, Mihai</creatorcontrib><title>Cruciform regions and a conjecture of Di Francesco</title><title>Proceedings of the American Mathematical Society</title><addtitle>Proc. Amer. Math. Soc</addtitle><description>A recent conjecture of Di Francesco states that the number of domino tilings of a certain family of regions on the square lattice is given by a product formula reminiscent of the one giving the number of alternating sign matrices. These regions, denoted Tn\mathcal {T}_n, are obtained by starting with a square of side-length 2n2n, cutting it in two along a diagonal by a zigzag path with step length two, and gluing to one of the resulting regions half of an Aztec diamond of order n−1n-1. Inspired by the regions Tn\mathcal {T}_n, we construct a family Cm,na,b,c,dC_{m,n}^{a,b,c,d} of cruciform regions generalizing the Aztec diamonds and we prove that their number of domino tilings is given by a simple product formula. Since (as it follows from our results) the number of domino tilings of Tn\mathcal {T}_n is a divisor of the number of tilings of the cruciform region C2n−1,2n−1n−1,n,n,n−2C_{2n-1,2n-1}^{n-1,n,n,n-2}, the special case of our formula corresponding to the latter can be viewed as partial progress towards proving Di Francesco’s conjecture.</description><subject>Research article</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9j81Kw0AURgdRMFY3PsFs3Aixd36SzCwlWhUK3dR1uJm5IykmU2bahW9va7t29fHB4cBh7F7AkwAL822Kbi4qa_QFKwQYU9ZG1pesAABZWqvsNbvJeXO4wuqmYLJNezeEmEae6GuIU-Y4eY7cxWlDbrdPxGPgLwNfJJwcZRdv2VXA70x3552xz8Xrun0vl6u3j_Z5WaKUsCu9MEjaKmxqXysvrScPWpOiRtQYUBE4jVWQoTdNL9C4gA3oqgcreolKzdjjyetSzDlR6LZpGDH9dAK6Y213rO3-ag_wwwnGMf_H_QLPYFQo</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Ciucu, Mihai</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221101</creationdate><title>Cruciform regions and a conjecture of Di Francesco</title><author>Ciucu, Mihai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a220t-d18ae493a76d63d29ded044e3e716afa3e0c4a5f2fb87b1a8cfa7045b091b2a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ciucu, Mihai</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ciucu, Mihai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cruciform regions and a conjecture of Di Francesco</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><stitle>Proc. Amer. Math. Soc</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>150</volume><issue>11</issue><spage>4655</spage><epage>4670</epage><pages>4655-4670</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>A recent conjecture of Di Francesco states that the number of domino tilings of a certain family of regions on the square lattice is given by a product formula reminiscent of the one giving the number of alternating sign matrices. These regions, denoted Tn\mathcal {T}_n, are obtained by starting with a square of side-length 2n2n, cutting it in two along a diagonal by a zigzag path with step length two, and gluing to one of the resulting regions half of an Aztec diamond of order n−1n-1. Inspired by the regions Tn\mathcal {T}_n, we construct a family Cm,na,b,c,dC_{m,n}^{a,b,c,d} of cruciform regions generalizing the Aztec diamonds and we prove that their number of domino tilings is given by a simple product formula. Since (as it follows from our results) the number of domino tilings of Tn\mathcal {T}_n is a divisor of the number of tilings of the cruciform region C2n−1,2n−1n−1,n,n,n−2C_{2n-1,2n-1}^{n-1,n,n,n-2}, the special case of our formula corresponding to the latter can be viewed as partial progress towards proving Di Francesco’s conjecture.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/proc/15984</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2022-11, Vol.150 (11), p.4655-4670 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_crossref_primary_10_1090_proc_15984 |
source | American Mathematical Society Publications |
subjects | Research article |
title | Cruciform regions and a conjecture of Di Francesco |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A04%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cruciform%20regions%20and%20a%20conjecture%20of%20Di%20Francesco&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Ciucu,%20Mihai&rft.date=2022-11-01&rft.volume=150&rft.issue=11&rft.spage=4655&rft.epage=4670&rft.pages=4655-4670&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/15984&rft_dat=%3Cams_cross%3E10_1090_proc_15984%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |