The flocking behavior of the infinite-particle Cucker-Smale model
In this article, we study the flocking behavior of the solutions to the infinite-particle Cucker-Smale model. We first establish the existence and uniqueness of the solutions to the infinite-particle Cucker-Smale model. And then build the boundedness of velocity by showing the non-increase of the l_...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2022-05, Vol.150 (5), p.2165 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we study the flocking behavior of the solutions to the infinite-particle Cucker-Smale model. We first establish the existence and uniqueness of the solutions to the infinite-particle Cucker-Smale model. And then build the boundedness of velocity by showing the non-increase of the l_\infty-norm of v(t) through classifying the particles according to the norm of velocity. Finally, we obtain the flocking behavior of the infinite-particle Cucker-Smale model. More precisely, the solutions to the infinite-particle Cucker-Smale model will concentrate exponentially fast in velocity to the average of the initial velocity, while in space the position differences between particles will be uniformly bounded. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/15848 |