The flocking behavior of the infinite-particle Cucker-Smale model

In this article, we study the flocking behavior of the solutions to the infinite-particle Cucker-Smale model. We first establish the existence and uniqueness of the solutions to the infinite-particle Cucker-Smale model. And then build the boundedness of velocity by showing the non-increase of the l_...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2022-05, Vol.150 (5), p.2165
Hauptverfasser: Wang, Xinyu, Xue, Xiaoping
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we study the flocking behavior of the solutions to the infinite-particle Cucker-Smale model. We first establish the existence and uniqueness of the solutions to the infinite-particle Cucker-Smale model. And then build the boundedness of velocity by showing the non-increase of the l_\infty-norm of v(t) through classifying the particles according to the norm of velocity. Finally, we obtain the flocking behavior of the infinite-particle Cucker-Smale model. More precisely, the solutions to the infinite-particle Cucker-Smale model will concentrate exponentially fast in velocity to the average of the initial velocity, while in space the position differences between particles will be uniformly bounded.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/15848