Lie automorphisms of incidence algebras

Let XX be a finite connected poset and KK a field. We give a full description of the Lie automorphisms of the incidence algebra I(X,K)I(X,K). In particular, we show that they are in general not proper.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2022-04, Vol.150 (4), p.1477-1492
Hauptverfasser: Fornaroli, Érica Z., Khrypchenko, Mykola, Santulo, Ednei A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1492
container_issue 4
container_start_page 1477
container_title Proceedings of the American Mathematical Society
container_volume 150
creator Fornaroli, Érica Z.
Khrypchenko, Mykola
Santulo, Ednei A.
description Let XX be a finite connected poset and KK a field. We give a full description of the Lie automorphisms of the incidence algebra I(X,K)I(X,K). In particular, we show that they are in general not proper.
doi_str_mv 10.1090/proc/15786
format Article
fullrecord <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_15786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_proc_15786</sourcerecordid><originalsourceid>FETCH-LOGICAL-a297t-a35fc2db10277452b970022a14abb77fde76d2385dfa40cfd5c835850a9093153</originalsourceid><addsrcrecordid>eNp9j0tLxDAUhYMoWEc3_oJuRBDq3CRNkyxl8AWF2YzrcPPSynRSknHhv7fjuHZ1OdyPc_gIuaZwT0HDcsrJLamQqjshFQWlmk6x7pRUAMAarbk-JxelfM6R6lZW5LYfQo1f-zSmPH0MZSx1ivWwc4MPOze_tu_BZiyX5CzitoSrv7sgb0-Pm9VL06-fX1cPfYNMy32DXETHvKXApGwFs1rOwwxpi9ZKGX2QnWdcCR-xBRe9cIoLJQA1aE4FX5C7Y6_LqZQcopnyMGL-NhTMQdEcFM2v4gzfHGEcy3_cD5d2T5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lie automorphisms of incidence algebras</title><source>American Mathematical Society Publications</source><creator>Fornaroli, Érica Z. ; Khrypchenko, Mykola ; Santulo, Ednei A.</creator><creatorcontrib>Fornaroli, Érica Z. ; Khrypchenko, Mykola ; Santulo, Ednei A.</creatorcontrib><description>Let XX be a finite connected poset and KK a field. We give a full description of the Lie automorphisms of the incidence algebra I(X,K)I(X,K). In particular, we show that they are in general not proper.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/15786</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Research article</subject><ispartof>Proceedings of the American Mathematical Society, 2022-04, Vol.150 (4), p.1477-1492</ispartof><rights>Copyright 2022 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a297t-a35fc2db10277452b970022a14abb77fde76d2385dfa40cfd5c835850a9093153</citedby><cites>FETCH-LOGICAL-a297t-a35fc2db10277452b970022a14abb77fde76d2385dfa40cfd5c835850a9093153</cites><orcidid>0000-0002-4504-3261 ; 0000-0003-1422-2950</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/proc/2022-150-04/S0002-9939-2022-15786-4/S0002-9939-2022-15786-4.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/proc/2022-150-04/S0002-9939-2022-15786-4/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,776,780,23307,27901,27902,77579,77589</link.rule.ids></links><search><creatorcontrib>Fornaroli, Érica Z.</creatorcontrib><creatorcontrib>Khrypchenko, Mykola</creatorcontrib><creatorcontrib>Santulo, Ednei A.</creatorcontrib><title>Lie automorphisms of incidence algebras</title><title>Proceedings of the American Mathematical Society</title><addtitle>Proc. Amer. Math. Soc</addtitle><description>Let XX be a finite connected poset and KK a field. We give a full description of the Lie automorphisms of the incidence algebra I(X,K)I(X,K). In particular, we show that they are in general not proper.</description><subject>Research article</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9j0tLxDAUhYMoWEc3_oJuRBDq3CRNkyxl8AWF2YzrcPPSynRSknHhv7fjuHZ1OdyPc_gIuaZwT0HDcsrJLamQqjshFQWlmk6x7pRUAMAarbk-JxelfM6R6lZW5LYfQo1f-zSmPH0MZSx1ivWwc4MPOze_tu_BZiyX5CzitoSrv7sgb0-Pm9VL06-fX1cPfYNMy32DXETHvKXApGwFs1rOwwxpi9ZKGX2QnWdcCR-xBRe9cIoLJQA1aE4FX5C7Y6_LqZQcopnyMGL-NhTMQdEcFM2v4gzfHGEcy3_cD5d2T5w</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Fornaroli, Érica Z.</creator><creator>Khrypchenko, Mykola</creator><creator>Santulo, Ednei A.</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4504-3261</orcidid><orcidid>https://orcid.org/0000-0003-1422-2950</orcidid></search><sort><creationdate>20220401</creationdate><title>Lie automorphisms of incidence algebras</title><author>Fornaroli, Érica Z. ; Khrypchenko, Mykola ; Santulo, Ednei A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a297t-a35fc2db10277452b970022a14abb77fde76d2385dfa40cfd5c835850a9093153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fornaroli, Érica Z.</creatorcontrib><creatorcontrib>Khrypchenko, Mykola</creatorcontrib><creatorcontrib>Santulo, Ednei A.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fornaroli, Érica Z.</au><au>Khrypchenko, Mykola</au><au>Santulo, Ednei A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lie automorphisms of incidence algebras</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><stitle>Proc. Amer. Math. Soc</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>150</volume><issue>4</issue><spage>1477</spage><epage>1492</epage><pages>1477-1492</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>Let XX be a finite connected poset and KK a field. We give a full description of the Lie automorphisms of the incidence algebra I(X,K)I(X,K). In particular, we show that they are in general not proper.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/proc/15786</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4504-3261</orcidid><orcidid>https://orcid.org/0000-0003-1422-2950</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2022-04, Vol.150 (4), p.1477-1492
issn 0002-9939
1088-6826
language eng
recordid cdi_crossref_primary_10_1090_proc_15786
source American Mathematical Society Publications
subjects Research article
title Lie automorphisms of incidence algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A14%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lie%20automorphisms%20of%20incidence%20algebras&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Fornaroli,%20%C3%89rica%20Z.&rft.date=2022-04-01&rft.volume=150&rft.issue=4&rft.spage=1477&rft.epage=1492&rft.pages=1477-1492&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/15786&rft_dat=%3Cams_cross%3E10_1090_proc_15786%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true