The dimension of eigenvariety of nonnegative tensors associated with spectral radius

For a nonnegative weakly irreducible tensor, its spectral radius is an eigenvalue corresponding to a unique positive eigenvector up to a scalar, called Perron vector. But including the Perron vector, it may have more than one eigenvector corresponding to the spectral radius. The projective eigenvari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2022-06, Vol.150 (6), p.2287
Hauptverfasser: Fan, Yi-Zheng, Huang, Tao, Bao, Yan-Hong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 2287
container_title Proceedings of the American Mathematical Society
container_volume 150
creator Fan, Yi-Zheng
Huang, Tao
Bao, Yan-Hong
description For a nonnegative weakly irreducible tensor, its spectral radius is an eigenvalue corresponding to a unique positive eigenvector up to a scalar, called Perron vector. But including the Perron vector, it may have more than one eigenvector corresponding to the spectral radius. The projective eigenvariety associated with the spectral radius is the set of the eigenvectors corresponding to the spectral radius considered in the complex projective space. We prove that the dimension of the above projective eigenvariety is zero, i.e. there are finitely many eigenvectors associated with the spectral radius up to a scalar. We characterize a nonnegative combinatorially symmetric tensor for which the dimension of projective eigenvariety associated with spectral radius is greater than zero. Finally we apply those results to the adjacency tensors of uniform hypergraphs.
doi_str_mv 10.1090/proc/15781
format Article
fullrecord <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_15781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_proc_15781</sourcerecordid><originalsourceid>FETCH-LOGICAL-a220t-457c77188517e7cf0c6fccb5523ff82c3c823d9526e5cf03c7e13de9243b30063</originalsourceid><addsrcrecordid>eNp9kDtPwzAYRS0EEqGw8Au8sCCF-hHH9ogqXlIlljBHrvO5NWriyDZF_fcklJnp6uoe3eEgdEvJAyWaLMcY7JIKqegZKihRqqwVq89RQQhhpdZcX6KrlD6nSnUlC9Q0O8Cd72FIPgw4OAx-C8PBRA_5OPchDANsTfYHwHnCQkzYpBSsNxk6_O3zDqcRbI5mj6Pp_Fe6RhfO7BPc_OUCfTw_NavXcv3-8rZ6XJeGMZLLSkgrJVVKUAnSOmJrZ-1GCMadU8xyqxjvtGA1iGnlVgLlHWhW8Q0npOYLdH_6tTGkFMG1Y_S9iceWknb20c4-2l8fE3x3gk2f_uN-ALJ-YSU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The dimension of eigenvariety of nonnegative tensors associated with spectral radius</title><source>American Mathematical Society Publications</source><creator>Fan, Yi-Zheng ; Huang, Tao ; Bao, Yan-Hong</creator><creatorcontrib>Fan, Yi-Zheng ; Huang, Tao ; Bao, Yan-Hong</creatorcontrib><description>For a nonnegative weakly irreducible tensor, its spectral radius is an eigenvalue corresponding to a unique positive eigenvector up to a scalar, called Perron vector. But including the Perron vector, it may have more than one eigenvector corresponding to the spectral radius. The projective eigenvariety associated with the spectral radius is the set of the eigenvectors corresponding to the spectral radius considered in the complex projective space. We prove that the dimension of the above projective eigenvariety is zero, i.e. there are finitely many eigenvectors associated with the spectral radius up to a scalar. We characterize a nonnegative combinatorially symmetric tensor for which the dimension of projective eigenvariety associated with spectral radius is greater than zero. Finally we apply those results to the adjacency tensors of uniform hypergraphs.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/15781</identifier><language>eng</language><ispartof>Proceedings of the American Mathematical Society, 2022-06, Vol.150 (6), p.2287</ispartof><rights>Copyright 2022, American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a220t-457c77188517e7cf0c6fccb5523ff82c3c823d9526e5cf03c7e13de9243b30063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/proc/2022-150-06/S0002-9939-2022-15781-5/S0002-9939-2022-15781-5.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/proc/2022-150-06/S0002-9939-2022-15781-5/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,776,780,23308,27903,27904,77582,77592</link.rule.ids></links><search><creatorcontrib>Fan, Yi-Zheng</creatorcontrib><creatorcontrib>Huang, Tao</creatorcontrib><creatorcontrib>Bao, Yan-Hong</creatorcontrib><title>The dimension of eigenvariety of nonnegative tensors associated with spectral radius</title><title>Proceedings of the American Mathematical Society</title><description>For a nonnegative weakly irreducible tensor, its spectral radius is an eigenvalue corresponding to a unique positive eigenvector up to a scalar, called Perron vector. But including the Perron vector, it may have more than one eigenvector corresponding to the spectral radius. The projective eigenvariety associated with the spectral radius is the set of the eigenvectors corresponding to the spectral radius considered in the complex projective space. We prove that the dimension of the above projective eigenvariety is zero, i.e. there are finitely many eigenvectors associated with the spectral radius up to a scalar. We characterize a nonnegative combinatorially symmetric tensor for which the dimension of projective eigenvariety associated with spectral radius is greater than zero. Finally we apply those results to the adjacency tensors of uniform hypergraphs.</description><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAYRS0EEqGw8Au8sCCF-hHH9ogqXlIlljBHrvO5NWriyDZF_fcklJnp6uoe3eEgdEvJAyWaLMcY7JIKqegZKihRqqwVq89RQQhhpdZcX6KrlD6nSnUlC9Q0O8Cd72FIPgw4OAx-C8PBRA_5OPchDANsTfYHwHnCQkzYpBSsNxk6_O3zDqcRbI5mj6Pp_Fe6RhfO7BPc_OUCfTw_NavXcv3-8rZ6XJeGMZLLSkgrJVVKUAnSOmJrZ-1GCMadU8xyqxjvtGA1iGnlVgLlHWhW8Q0npOYLdH_6tTGkFMG1Y_S9iceWknb20c4-2l8fE3x3gk2f_uN-ALJ-YSU</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Fan, Yi-Zheng</creator><creator>Huang, Tao</creator><creator>Bao, Yan-Hong</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220601</creationdate><title>The dimension of eigenvariety of nonnegative tensors associated with spectral radius</title><author>Fan, Yi-Zheng ; Huang, Tao ; Bao, Yan-Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a220t-457c77188517e7cf0c6fccb5523ff82c3c823d9526e5cf03c7e13de9243b30063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Yi-Zheng</creatorcontrib><creatorcontrib>Huang, Tao</creatorcontrib><creatorcontrib>Bao, Yan-Hong</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Yi-Zheng</au><au>Huang, Tao</au><au>Bao, Yan-Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The dimension of eigenvariety of nonnegative tensors associated with spectral radius</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>150</volume><issue>6</issue><spage>2287</spage><pages>2287-</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>For a nonnegative weakly irreducible tensor, its spectral radius is an eigenvalue corresponding to a unique positive eigenvector up to a scalar, called Perron vector. But including the Perron vector, it may have more than one eigenvector corresponding to the spectral radius. The projective eigenvariety associated with the spectral radius is the set of the eigenvectors corresponding to the spectral radius considered in the complex projective space. We prove that the dimension of the above projective eigenvariety is zero, i.e. there are finitely many eigenvectors associated with the spectral radius up to a scalar. We characterize a nonnegative combinatorially symmetric tensor for which the dimension of projective eigenvariety associated with spectral radius is greater than zero. Finally we apply those results to the adjacency tensors of uniform hypergraphs.</abstract><doi>10.1090/proc/15781</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2022-06, Vol.150 (6), p.2287
issn 0002-9939
1088-6826
language eng
recordid cdi_crossref_primary_10_1090_proc_15781
source American Mathematical Society Publications
title The dimension of eigenvariety of nonnegative tensors associated with spectral radius
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T08%3A46%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20dimension%20of%20eigenvariety%20of%20nonnegative%20tensors%20associated%20with%20spectral%20radius&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Fan,%20Yi-Zheng&rft.date=2022-06-01&rft.volume=150&rft.issue=6&rft.spage=2287&rft.pages=2287-&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/15781&rft_dat=%3Cams_cross%3E10_1090_proc_15781%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true