The dimension of eigenvariety of nonnegative tensors associated with spectral radius
For a nonnegative weakly irreducible tensor, its spectral radius is an eigenvalue corresponding to a unique positive eigenvector up to a scalar, called Perron vector. But including the Perron vector, it may have more than one eigenvector corresponding to the spectral radius. The projective eigenvari...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2022-06, Vol.150 (6), p.2287 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 2287 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 150 |
creator | Fan, Yi-Zheng Huang, Tao Bao, Yan-Hong |
description | For a nonnegative weakly irreducible tensor, its spectral radius is an eigenvalue corresponding to a unique positive eigenvector up to a scalar, called Perron vector. But including the Perron vector, it may have more than one eigenvector corresponding to the spectral radius. The projective eigenvariety associated with the spectral radius is the set of the eigenvectors corresponding to the spectral radius considered in the complex projective space. We prove that the dimension of the above projective eigenvariety is zero, i.e. there are finitely many eigenvectors associated with the spectral radius up to a scalar. We characterize a nonnegative combinatorially symmetric tensor for which the dimension of projective eigenvariety associated with spectral radius is greater than zero. Finally we apply those results to the adjacency tensors of uniform hypergraphs. |
doi_str_mv | 10.1090/proc/15781 |
format | Article |
fullrecord | <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_15781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_proc_15781</sourcerecordid><originalsourceid>FETCH-LOGICAL-a220t-457c77188517e7cf0c6fccb5523ff82c3c823d9526e5cf03c7e13de9243b30063</originalsourceid><addsrcrecordid>eNp9kDtPwzAYRS0EEqGw8Au8sCCF-hHH9ogqXlIlljBHrvO5NWriyDZF_fcklJnp6uoe3eEgdEvJAyWaLMcY7JIKqegZKihRqqwVq89RQQhhpdZcX6KrlD6nSnUlC9Q0O8Cd72FIPgw4OAx-C8PBRA_5OPchDANsTfYHwHnCQkzYpBSsNxk6_O3zDqcRbI5mj6Pp_Fe6RhfO7BPc_OUCfTw_NavXcv3-8rZ6XJeGMZLLSkgrJVVKUAnSOmJrZ-1GCMadU8xyqxjvtGA1iGnlVgLlHWhW8Q0npOYLdH_6tTGkFMG1Y_S9iceWknb20c4-2l8fE3x3gk2f_uN-ALJ-YSU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The dimension of eigenvariety of nonnegative tensors associated with spectral radius</title><source>American Mathematical Society Publications</source><creator>Fan, Yi-Zheng ; Huang, Tao ; Bao, Yan-Hong</creator><creatorcontrib>Fan, Yi-Zheng ; Huang, Tao ; Bao, Yan-Hong</creatorcontrib><description>For a nonnegative weakly irreducible tensor, its spectral radius is an eigenvalue corresponding to a unique positive eigenvector up to a scalar, called Perron vector. But including the Perron vector, it may have more than one eigenvector corresponding to the spectral radius. The projective eigenvariety associated with the spectral radius is the set of the eigenvectors corresponding to the spectral radius considered in the complex projective space. We prove that the dimension of the above projective eigenvariety is zero, i.e. there are finitely many eigenvectors associated with the spectral radius up to a scalar. We characterize a nonnegative combinatorially symmetric tensor for which the dimension of projective eigenvariety associated with spectral radius is greater than zero. Finally we apply those results to the adjacency tensors of uniform hypergraphs.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/15781</identifier><language>eng</language><ispartof>Proceedings of the American Mathematical Society, 2022-06, Vol.150 (6), p.2287</ispartof><rights>Copyright 2022, American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a220t-457c77188517e7cf0c6fccb5523ff82c3c823d9526e5cf03c7e13de9243b30063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/proc/2022-150-06/S0002-9939-2022-15781-5/S0002-9939-2022-15781-5.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/proc/2022-150-06/S0002-9939-2022-15781-5/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,776,780,23308,27903,27904,77582,77592</link.rule.ids></links><search><creatorcontrib>Fan, Yi-Zheng</creatorcontrib><creatorcontrib>Huang, Tao</creatorcontrib><creatorcontrib>Bao, Yan-Hong</creatorcontrib><title>The dimension of eigenvariety of nonnegative tensors associated with spectral radius</title><title>Proceedings of the American Mathematical Society</title><description>For a nonnegative weakly irreducible tensor, its spectral radius is an eigenvalue corresponding to a unique positive eigenvector up to a scalar, called Perron vector. But including the Perron vector, it may have more than one eigenvector corresponding to the spectral radius. The projective eigenvariety associated with the spectral radius is the set of the eigenvectors corresponding to the spectral radius considered in the complex projective space. We prove that the dimension of the above projective eigenvariety is zero, i.e. there are finitely many eigenvectors associated with the spectral radius up to a scalar. We characterize a nonnegative combinatorially symmetric tensor for which the dimension of projective eigenvariety associated with spectral radius is greater than zero. Finally we apply those results to the adjacency tensors of uniform hypergraphs.</description><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAYRS0EEqGw8Au8sCCF-hHH9ogqXlIlljBHrvO5NWriyDZF_fcklJnp6uoe3eEgdEvJAyWaLMcY7JIKqegZKihRqqwVq89RQQhhpdZcX6KrlD6nSnUlC9Q0O8Cd72FIPgw4OAx-C8PBRA_5OPchDANsTfYHwHnCQkzYpBSsNxk6_O3zDqcRbI5mj6Pp_Fe6RhfO7BPc_OUCfTw_NavXcv3-8rZ6XJeGMZLLSkgrJVVKUAnSOmJrZ-1GCMadU8xyqxjvtGA1iGnlVgLlHWhW8Q0npOYLdH_6tTGkFMG1Y_S9iceWknb20c4-2l8fE3x3gk2f_uN-ALJ-YSU</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Fan, Yi-Zheng</creator><creator>Huang, Tao</creator><creator>Bao, Yan-Hong</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220601</creationdate><title>The dimension of eigenvariety of nonnegative tensors associated with spectral radius</title><author>Fan, Yi-Zheng ; Huang, Tao ; Bao, Yan-Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a220t-457c77188517e7cf0c6fccb5523ff82c3c823d9526e5cf03c7e13de9243b30063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Yi-Zheng</creatorcontrib><creatorcontrib>Huang, Tao</creatorcontrib><creatorcontrib>Bao, Yan-Hong</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Yi-Zheng</au><au>Huang, Tao</au><au>Bao, Yan-Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The dimension of eigenvariety of nonnegative tensors associated with spectral radius</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>150</volume><issue>6</issue><spage>2287</spage><pages>2287-</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>For a nonnegative weakly irreducible tensor, its spectral radius is an eigenvalue corresponding to a unique positive eigenvector up to a scalar, called Perron vector. But including the Perron vector, it may have more than one eigenvector corresponding to the spectral radius. The projective eigenvariety associated with the spectral radius is the set of the eigenvectors corresponding to the spectral radius considered in the complex projective space. We prove that the dimension of the above projective eigenvariety is zero, i.e. there are finitely many eigenvectors associated with the spectral radius up to a scalar. We characterize a nonnegative combinatorially symmetric tensor for which the dimension of projective eigenvariety associated with spectral radius is greater than zero. Finally we apply those results to the adjacency tensors of uniform hypergraphs.</abstract><doi>10.1090/proc/15781</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2022-06, Vol.150 (6), p.2287 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_crossref_primary_10_1090_proc_15781 |
source | American Mathematical Society Publications |
title | The dimension of eigenvariety of nonnegative tensors associated with spectral radius |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T08%3A46%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20dimension%20of%20eigenvariety%20of%20nonnegative%20tensors%20associated%20with%20spectral%20radius&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Fan,%20Yi-Zheng&rft.date=2022-06-01&rft.volume=150&rft.issue=6&rft.spage=2287&rft.pages=2287-&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/15781&rft_dat=%3Cams_cross%3E10_1090_proc_15781%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |