Convex floating bodies of equilibrium

We study a long standing open problem by Ulam, which is whether the Euclidean ball is the unique body of uniform density which will float in equilibrium in any direction. We answer this problem in the class of origin symmetric n-dimensional convex bodies whose relative density to water is \frac {1}{...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2022-07, Vol.150 (7), p.3037-3048
Hauptverfasser: Florentin, D., Schütt, C., Werner, E., Zhang, N.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3048
container_issue 7
container_start_page 3037
container_title Proceedings of the American Mathematical Society
container_volume 150
creator Florentin, D.
Schütt, C.
Werner, E.
Zhang, N.
description We study a long standing open problem by Ulam, which is whether the Euclidean ball is the unique body of uniform density which will float in equilibrium in any direction. We answer this problem in the class of origin symmetric n-dimensional convex bodies whose relative density to water is \frac {1}{2}. For n=3, this result is due to Falconer.
doi_str_mv 10.1090/proc/15697
format Article
fullrecord <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_15697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_proc_15697</sourcerecordid><originalsourceid>FETCH-LOGICAL-a191t-869ee6140ab9149a50de6c8a01d6d5c09859df6ef13d6afd32d11de67d1137653</originalsourceid><addsrcrecordid>eNp9j0FLwzAYhoMoWKcXf0Evuwhx39e0ab6jFJ3CYJd5LmmTSKRdZrKJ_ns759nTwwsPLzyM3SLcIxAsdjH0C6wk1WcsQ1CKS1XIc5YBQMGJBF2yq5Tep4lU1hmbN2H7ab9yNwS999u3vAvG25QHl9uPgx98F_1hvGYXTg_J3vxxxl6fHjfNM1-tly_Nw4prJNxzJclaiSXojrAkXYGxslca0EhT9UCqIuOkdSiM1M6IwiBOSj1B1LISM3Z3-u1jSCla1-6iH3X8bhHaY2B7DGx_Ayd5fpL1mP7zfgALp09c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Convex floating bodies of equilibrium</title><source>American Mathematical Society Publications</source><creator>Florentin, D. ; Schütt, C. ; Werner, E. ; Zhang, N.</creator><creatorcontrib>Florentin, D. ; Schütt, C. ; Werner, E. ; Zhang, N.</creatorcontrib><description>We study a long standing open problem by Ulam, which is whether the Euclidean ball is the unique body of uniform density which will float in equilibrium in any direction. We answer this problem in the class of origin symmetric n-dimensional convex bodies whose relative density to water is \frac {1}{2}. For n=3, this result is due to Falconer.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/15697</identifier><language>eng</language><ispartof>Proceedings of the American Mathematical Society, 2022-07, Vol.150 (7), p.3037-3048</ispartof><rights>Copyright 2022, American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a191t-869ee6140ab9149a50de6c8a01d6d5c09859df6ef13d6afd32d11de67d1137653</citedby><cites>FETCH-LOGICAL-a191t-869ee6140ab9149a50de6c8a01d6d5c09859df6ef13d6afd32d11de67d1137653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/proc/2022-150-07/S0002-9939-2022-15697-4/S0002-9939-2022-15697-4.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/proc/2022-150-07/S0002-9939-2022-15697-4/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23319,27915,27916,77597,77607</link.rule.ids></links><search><creatorcontrib>Florentin, D.</creatorcontrib><creatorcontrib>Schütt, C.</creatorcontrib><creatorcontrib>Werner, E.</creatorcontrib><creatorcontrib>Zhang, N.</creatorcontrib><title>Convex floating bodies of equilibrium</title><title>Proceedings of the American Mathematical Society</title><description>We study a long standing open problem by Ulam, which is whether the Euclidean ball is the unique body of uniform density which will float in equilibrium in any direction. We answer this problem in the class of origin symmetric n-dimensional convex bodies whose relative density to water is \frac {1}{2}. For n=3, this result is due to Falconer.</description><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9j0FLwzAYhoMoWKcXf0Evuwhx39e0ab6jFJ3CYJd5LmmTSKRdZrKJ_ns759nTwwsPLzyM3SLcIxAsdjH0C6wk1WcsQ1CKS1XIc5YBQMGJBF2yq5Tep4lU1hmbN2H7ab9yNwS999u3vAvG25QHl9uPgx98F_1hvGYXTg_J3vxxxl6fHjfNM1-tly_Nw4prJNxzJclaiSXojrAkXYGxslca0EhT9UCqIuOkdSiM1M6IwiBOSj1B1LISM3Z3-u1jSCla1-6iH3X8bhHaY2B7DGx_Ayd5fpL1mP7zfgALp09c</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Florentin, D.</creator><creator>Schütt, C.</creator><creator>Werner, E.</creator><creator>Zhang, N.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220701</creationdate><title>Convex floating bodies of equilibrium</title><author>Florentin, D. ; Schütt, C. ; Werner, E. ; Zhang, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a191t-869ee6140ab9149a50de6c8a01d6d5c09859df6ef13d6afd32d11de67d1137653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Florentin, D.</creatorcontrib><creatorcontrib>Schütt, C.</creatorcontrib><creatorcontrib>Werner, E.</creatorcontrib><creatorcontrib>Zhang, N.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Florentin, D.</au><au>Schütt, C.</au><au>Werner, E.</au><au>Zhang, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convex floating bodies of equilibrium</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>150</volume><issue>7</issue><spage>3037</spage><epage>3048</epage><pages>3037-3048</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>We study a long standing open problem by Ulam, which is whether the Euclidean ball is the unique body of uniform density which will float in equilibrium in any direction. We answer this problem in the class of origin symmetric n-dimensional convex bodies whose relative density to water is \frac {1}{2}. For n=3, this result is due to Falconer.</abstract><doi>10.1090/proc/15697</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2022-07, Vol.150 (7), p.3037-3048
issn 0002-9939
1088-6826
language eng
recordid cdi_crossref_primary_10_1090_proc_15697
source American Mathematical Society Publications
title Convex floating bodies of equilibrium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A57%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convex%20floating%20bodies%20of%20equilibrium&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Florentin,%20D.&rft.date=2022-07-01&rft.volume=150&rft.issue=7&rft.spage=3037&rft.epage=3048&rft.pages=3037-3048&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/15697&rft_dat=%3Cams_cross%3E10_1090_proc_15697%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true