Convex floating bodies of equilibrium
We study a long standing open problem by Ulam, which is whether the Euclidean ball is the unique body of uniform density which will float in equilibrium in any direction. We answer this problem in the class of origin symmetric n-dimensional convex bodies whose relative density to water is \frac {1}{...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2022-07, Vol.150 (7), p.3037-3048 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3048 |
---|---|
container_issue | 7 |
container_start_page | 3037 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 150 |
creator | Florentin, D. Schütt, C. Werner, E. Zhang, N. |
description | We study a long standing open problem by Ulam, which is whether the Euclidean ball is the unique body of uniform density which will float in equilibrium in any direction. We answer this problem in the class of origin symmetric n-dimensional convex bodies whose relative density to water is \frac {1}{2}. For n=3, this result is due to Falconer. |
doi_str_mv | 10.1090/proc/15697 |
format | Article |
fullrecord | <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_15697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_proc_15697</sourcerecordid><originalsourceid>FETCH-LOGICAL-a191t-869ee6140ab9149a50de6c8a01d6d5c09859df6ef13d6afd32d11de67d1137653</originalsourceid><addsrcrecordid>eNp9j0FLwzAYhoMoWKcXf0Evuwhx39e0ab6jFJ3CYJd5LmmTSKRdZrKJ_ns759nTwwsPLzyM3SLcIxAsdjH0C6wk1WcsQ1CKS1XIc5YBQMGJBF2yq5Tep4lU1hmbN2H7ab9yNwS999u3vAvG25QHl9uPgx98F_1hvGYXTg_J3vxxxl6fHjfNM1-tly_Nw4prJNxzJclaiSXojrAkXYGxslca0EhT9UCqIuOkdSiM1M6IwiBOSj1B1LISM3Z3-u1jSCla1-6iH3X8bhHaY2B7DGx_Ayd5fpL1mP7zfgALp09c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Convex floating bodies of equilibrium</title><source>American Mathematical Society Publications</source><creator>Florentin, D. ; Schütt, C. ; Werner, E. ; Zhang, N.</creator><creatorcontrib>Florentin, D. ; Schütt, C. ; Werner, E. ; Zhang, N.</creatorcontrib><description>We study a long standing open problem by Ulam, which is whether the Euclidean ball is the unique body of uniform density which will float in equilibrium in any direction. We answer this problem in the class of origin symmetric n-dimensional convex bodies whose relative density to water is \frac {1}{2}. For n=3, this result is due to Falconer.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/15697</identifier><language>eng</language><ispartof>Proceedings of the American Mathematical Society, 2022-07, Vol.150 (7), p.3037-3048</ispartof><rights>Copyright 2022, American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a191t-869ee6140ab9149a50de6c8a01d6d5c09859df6ef13d6afd32d11de67d1137653</citedby><cites>FETCH-LOGICAL-a191t-869ee6140ab9149a50de6c8a01d6d5c09859df6ef13d6afd32d11de67d1137653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/proc/2022-150-07/S0002-9939-2022-15697-4/S0002-9939-2022-15697-4.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/proc/2022-150-07/S0002-9939-2022-15697-4/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23319,27915,27916,77597,77607</link.rule.ids></links><search><creatorcontrib>Florentin, D.</creatorcontrib><creatorcontrib>Schütt, C.</creatorcontrib><creatorcontrib>Werner, E.</creatorcontrib><creatorcontrib>Zhang, N.</creatorcontrib><title>Convex floating bodies of equilibrium</title><title>Proceedings of the American Mathematical Society</title><description>We study a long standing open problem by Ulam, which is whether the Euclidean ball is the unique body of uniform density which will float in equilibrium in any direction. We answer this problem in the class of origin symmetric n-dimensional convex bodies whose relative density to water is \frac {1}{2}. For n=3, this result is due to Falconer.</description><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9j0FLwzAYhoMoWKcXf0Evuwhx39e0ab6jFJ3CYJd5LmmTSKRdZrKJ_ns759nTwwsPLzyM3SLcIxAsdjH0C6wk1WcsQ1CKS1XIc5YBQMGJBF2yq5Tep4lU1hmbN2H7ab9yNwS999u3vAvG25QHl9uPgx98F_1hvGYXTg_J3vxxxl6fHjfNM1-tly_Nw4prJNxzJclaiSXojrAkXYGxslca0EhT9UCqIuOkdSiM1M6IwiBOSj1B1LISM3Z3-u1jSCla1-6iH3X8bhHaY2B7DGx_Ayd5fpL1mP7zfgALp09c</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Florentin, D.</creator><creator>Schütt, C.</creator><creator>Werner, E.</creator><creator>Zhang, N.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220701</creationdate><title>Convex floating bodies of equilibrium</title><author>Florentin, D. ; Schütt, C. ; Werner, E. ; Zhang, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a191t-869ee6140ab9149a50de6c8a01d6d5c09859df6ef13d6afd32d11de67d1137653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Florentin, D.</creatorcontrib><creatorcontrib>Schütt, C.</creatorcontrib><creatorcontrib>Werner, E.</creatorcontrib><creatorcontrib>Zhang, N.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Florentin, D.</au><au>Schütt, C.</au><au>Werner, E.</au><au>Zhang, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convex floating bodies of equilibrium</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>150</volume><issue>7</issue><spage>3037</spage><epage>3048</epage><pages>3037-3048</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>We study a long standing open problem by Ulam, which is whether the Euclidean ball is the unique body of uniform density which will float in equilibrium in any direction. We answer this problem in the class of origin symmetric n-dimensional convex bodies whose relative density to water is \frac {1}{2}. For n=3, this result is due to Falconer.</abstract><doi>10.1090/proc/15697</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2022-07, Vol.150 (7), p.3037-3048 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_crossref_primary_10_1090_proc_15697 |
source | American Mathematical Society Publications |
title | Convex floating bodies of equilibrium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A57%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convex%20floating%20bodies%20of%20equilibrium&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Florentin,%20D.&rft.date=2022-07-01&rft.volume=150&rft.issue=7&rft.spage=3037&rft.epage=3048&rft.pages=3037-3048&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/15697&rft_dat=%3Cams_cross%3E10_1090_proc_15697%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |