Hausdorff dimension of sets with restricted, slowly growing partial quotients

I. J. Good [Proc. Cambridge Philos. Soc. 37 (1941), pp. 199–228] showed that the set of irrational numbers in (0,1) whose partial quotients a_n tend to infinity is of Hausdorff dimension 1/2. A number of related results impose restrictions of the type a_n\in B or a_n\geq f(n), where B is an infinite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2023-09, Vol.151 (9), p.3645-3653
1. Verfasser: Takahasi, Hiroki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:I. J. Good [Proc. Cambridge Philos. Soc. 37 (1941), pp. 199–228] showed that the set of irrational numbers in (0,1) whose partial quotients a_n tend to infinity is of Hausdorff dimension 1/2. A number of related results impose restrictions of the type a_n\in B or a_n\geq f(n), where B is an infinite subset of \mathbb{N} and f is a rapidly growing function with n. We show that, for an arbitrary B and an arbitrary f with values in [\min B,\infty ) and tending to infinity, the set of irrational numbers in (0,1) such that \begin{equation*} a_n\in B,\ a_n\leq f(n) for all n\in \mathbb{N}, and a_n\to \infty as n\to \infty \end{equation*} is of Hausdorff dimension \tau (B)/2, where \tau (B) is the exponent of convergence of B.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/15579