Sharp nonzero lower bounds for the Schur product theorem
By a result of Schur [J. Reine Angew. Math. 140 (1911), pp. 1–28], the entrywise product M \circ N of two positive semidefinite matrices M,N is again positive. Vybíral [Adv. Math. 368 (2020), p. 9] improved on this by showing the uniform lower bound M \circ \overline {M} \geq E_n / n for all n \time...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2021-12, Vol.149 (12), p.5049-5063 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5063 |
---|---|
container_issue | 12 |
container_start_page | 5049 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 149 |
creator | Khare, Apoorva |
description | By a result of Schur [J. Reine Angew. Math. 140 (1911), pp. 1–28], the entrywise product M \circ N of two positive semidefinite matrices M,N is again positive. Vybíral [Adv. Math. 368 (2020), p. 9] improved on this by showing the uniform lower bound M \circ \overline {M} \geq E_n / n for all n \times n real or complex correlation matrices M, where E_n is the all-ones matrix. This was applied to settle a conjecture of Novak [J. Complexity 15 (1999), pp. 299–316] and to positive definite functions on groups. Vybíral (in his original preprint) asked if one can obtain similar uniform lower bounds for higher entrywise powers of M, or for M \circ N when N \neq M, \overline {M}. A natural third question is to ask for a tighter lower bound that does not vanish as n \to \infty, i.e., over infinite-dimensional Hilbert spaces.
In this note, we affirmatively answer all three questions by extending and refining Vybíral’s result to lower-bound M \circ N, for arbitrary complex positive semidefinite matrices M,N. Specifically: we provide tight lower bounds, improving on Vybíral’s bounds. Second, our proof is ‘conceptual’ (and self-contained), providing a natural interpretation of these improved bounds via tracial Cauchy–Schwarz inequalities. Third, we extend our tight lower bounds to Hilbert–Schmidt operators. As an application, we settle Open Problem 1 of Hinrichs–Krieg–Novak–Vybíral [J. Complexity 65 (2021), Paper No. 101544, 20 pp.], which yields improvements in the error bounds in certain tensor product (integration) problems. |
doi_str_mv | 10.1090/proc/15555 |
format | Article |
fullrecord | <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_15555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_proc_15555</sourcerecordid><originalsourceid>FETCH-LOGICAL-a220t-88408fa345831cd10b7aee6234e5f86c12ff48befea7139dcea4496a87ac162a3</originalsourceid><addsrcrecordid>eNp9j01LxDAURYMoWEc3_oJs3Ah18tU0WcqgozDgYnRdXtMXqkybkrSI_npbx7V387iPw4VDyDVnd5xZth5icGtezDkhGWfG5NoIfUoyxpjIrZX2nFyk9DFXblWZEbNvIQ60D_03xkAP4RMjrcPUN4n6EOnYIt27dop0nm4mNy6fELG7JGceDgmv_u6KvD0-vG6e8t3L9nlzv8tBCDbmxihmPEhVGMldw1ldAqIWUmHhjXZceK9MjR6h5NI2DkEpq8GU4LgWIFfk9rjrYkgpoq-G-N5B_Ko4qxbnanGufp1n-OYIQ5f-434AgPZWtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sharp nonzero lower bounds for the Schur product theorem</title><source>American Mathematical Society Publications</source><creator>Khare, Apoorva</creator><creatorcontrib>Khare, Apoorva</creatorcontrib><description>By a result of Schur [J. Reine Angew. Math. 140 (1911), pp. 1–28], the entrywise product M \circ N of two positive semidefinite matrices M,N is again positive. Vybíral [Adv. Math. 368 (2020), p. 9] improved on this by showing the uniform lower bound M \circ \overline {M} \geq E_n / n for all n \times n real or complex correlation matrices M, where E_n is the all-ones matrix. This was applied to settle a conjecture of Novak [J. Complexity 15 (1999), pp. 299–316] and to positive definite functions on groups. Vybíral (in his original preprint) asked if one can obtain similar uniform lower bounds for higher entrywise powers of M, or for M \circ N when N \neq M, \overline {M}. A natural third question is to ask for a tighter lower bound that does not vanish as n \to \infty, i.e., over infinite-dimensional Hilbert spaces.
In this note, we affirmatively answer all three questions by extending and refining Vybíral’s result to lower-bound M \circ N, for arbitrary complex positive semidefinite matrices M,N. Specifically: we provide tight lower bounds, improving on Vybíral’s bounds. Second, our proof is ‘conceptual’ (and self-contained), providing a natural interpretation of these improved bounds via tracial Cauchy–Schwarz inequalities. Third, we extend our tight lower bounds to Hilbert–Schmidt operators. As an application, we settle Open Problem 1 of Hinrichs–Krieg–Novak–Vybíral [J. Complexity 65 (2021), Paper No. 101544, 20 pp.], which yields improvements in the error bounds in certain tensor product (integration) problems.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/15555</identifier><language>eng</language><ispartof>Proceedings of the American Mathematical Society, 2021-12, Vol.149 (12), p.5049-5063</ispartof><rights>Copyright 2021, American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a220t-88408fa345831cd10b7aee6234e5f86c12ff48befea7139dcea4496a87ac162a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/proc/2021-149-12/S0002-9939-2021-15555-X/S0002-9939-2021-15555-X.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/proc/2021-149-12/S0002-9939-2021-15555-X/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,778,782,23311,27907,27908,77587,77597</link.rule.ids></links><search><creatorcontrib>Khare, Apoorva</creatorcontrib><title>Sharp nonzero lower bounds for the Schur product theorem</title><title>Proceedings of the American Mathematical Society</title><description>By a result of Schur [J. Reine Angew. Math. 140 (1911), pp. 1–28], the entrywise product M \circ N of two positive semidefinite matrices M,N is again positive. Vybíral [Adv. Math. 368 (2020), p. 9] improved on this by showing the uniform lower bound M \circ \overline {M} \geq E_n / n for all n \times n real or complex correlation matrices M, where E_n is the all-ones matrix. This was applied to settle a conjecture of Novak [J. Complexity 15 (1999), pp. 299–316] and to positive definite functions on groups. Vybíral (in his original preprint) asked if one can obtain similar uniform lower bounds for higher entrywise powers of M, or for M \circ N when N \neq M, \overline {M}. A natural third question is to ask for a tighter lower bound that does not vanish as n \to \infty, i.e., over infinite-dimensional Hilbert spaces.
In this note, we affirmatively answer all three questions by extending and refining Vybíral’s result to lower-bound M \circ N, for arbitrary complex positive semidefinite matrices M,N. Specifically: we provide tight lower bounds, improving on Vybíral’s bounds. Second, our proof is ‘conceptual’ (and self-contained), providing a natural interpretation of these improved bounds via tracial Cauchy–Schwarz inequalities. Third, we extend our tight lower bounds to Hilbert–Schmidt operators. As an application, we settle Open Problem 1 of Hinrichs–Krieg–Novak–Vybíral [J. Complexity 65 (2021), Paper No. 101544, 20 pp.], which yields improvements in the error bounds in certain tensor product (integration) problems.</description><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9j01LxDAURYMoWEc3_oJs3Ah18tU0WcqgozDgYnRdXtMXqkybkrSI_npbx7V387iPw4VDyDVnd5xZth5icGtezDkhGWfG5NoIfUoyxpjIrZX2nFyk9DFXblWZEbNvIQ60D_03xkAP4RMjrcPUN4n6EOnYIt27dop0nm4mNy6fELG7JGceDgmv_u6KvD0-vG6e8t3L9nlzv8tBCDbmxihmPEhVGMldw1ldAqIWUmHhjXZceK9MjR6h5NI2DkEpq8GU4LgWIFfk9rjrYkgpoq-G-N5B_Ko4qxbnanGufp1n-OYIQ5f-434AgPZWtg</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Khare, Apoorva</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211201</creationdate><title>Sharp nonzero lower bounds for the Schur product theorem</title><author>Khare, Apoorva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a220t-88408fa345831cd10b7aee6234e5f86c12ff48befea7139dcea4496a87ac162a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khare, Apoorva</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khare, Apoorva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sharp nonzero lower bounds for the Schur product theorem</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>149</volume><issue>12</issue><spage>5049</spage><epage>5063</epage><pages>5049-5063</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>By a result of Schur [J. Reine Angew. Math. 140 (1911), pp. 1–28], the entrywise product M \circ N of two positive semidefinite matrices M,N is again positive. Vybíral [Adv. Math. 368 (2020), p. 9] improved on this by showing the uniform lower bound M \circ \overline {M} \geq E_n / n for all n \times n real or complex correlation matrices M, where E_n is the all-ones matrix. This was applied to settle a conjecture of Novak [J. Complexity 15 (1999), pp. 299–316] and to positive definite functions on groups. Vybíral (in his original preprint) asked if one can obtain similar uniform lower bounds for higher entrywise powers of M, or for M \circ N when N \neq M, \overline {M}. A natural third question is to ask for a tighter lower bound that does not vanish as n \to \infty, i.e., over infinite-dimensional Hilbert spaces.
In this note, we affirmatively answer all three questions by extending and refining Vybíral’s result to lower-bound M \circ N, for arbitrary complex positive semidefinite matrices M,N. Specifically: we provide tight lower bounds, improving on Vybíral’s bounds. Second, our proof is ‘conceptual’ (and self-contained), providing a natural interpretation of these improved bounds via tracial Cauchy–Schwarz inequalities. Third, we extend our tight lower bounds to Hilbert–Schmidt operators. As an application, we settle Open Problem 1 of Hinrichs–Krieg–Novak–Vybíral [J. Complexity 65 (2021), Paper No. 101544, 20 pp.], which yields improvements in the error bounds in certain tensor product (integration) problems.</abstract><doi>10.1090/proc/15555</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2021-12, Vol.149 (12), p.5049-5063 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_crossref_primary_10_1090_proc_15555 |
source | American Mathematical Society Publications |
title | Sharp nonzero lower bounds for the Schur product theorem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A16%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sharp%20nonzero%20lower%20bounds%20for%20the%20Schur%20product%20theorem&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Khare,%20Apoorva&rft.date=2021-12-01&rft.volume=149&rft.issue=12&rft.spage=5049&rft.epage=5063&rft.pages=5049-5063&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/15555&rft_dat=%3Cams_cross%3E10_1090_proc_15555%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |