An on-average Maeda-type conjecture in the level aspect
We present a conjecture on the average number of Galois orbits of newforms when fixing the weight and varying the level. This conjecture implies, for instance, that the central LL-values (resp. LL-derivatives) are nonzero for 100100% of even weight prime level newforms with root number +1+1 (resp. −...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2021-04, Vol.149 (4), p.1373-1386 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1386 |
---|---|
container_issue | 4 |
container_start_page | 1373 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 149 |
creator | Martin, Kimball |
description | We present a conjecture on the average number of Galois orbits of newforms when fixing the weight and varying the level. This conjecture implies, for instance, that the central LL-values (resp. LL-derivatives) are nonzero for 100100% of even weight prime level newforms with root number +1+1 (resp. −1-1). |
doi_str_mv | 10.1090/proc/15328 |
format | Article |
fullrecord | <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_15328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_proc_15328</sourcerecordid><originalsourceid>FETCH-LOGICAL-a327t-49c1109afd8a36d04082fa620a779f5b240ada29d5e676eafae2c42f90867b5a3</originalsourceid><addsrcrecordid>eNp9j01Lw0AURQdRMFY3_oLZuBHGvpkk87EsRavQ0o2uw-vkjbakSZiJhf57U-va1eM-Dpd7GLuX8CTBwbSPnZ_KMlf2gmUSrBXaKn3JMgBQwrncXbOblHZjlK4wGTOzlnetwANF_CS-QqpRDMeeuO_aHfnhOxLftnz4It7QgRqOqR_ft-wqYJPo7u9O2MfL8_v8VSzXi7f5bCkwV2YQhfNyHIahtpjrGgqwKqBWgMa4UG5UAVijcnVJ2mjCgKR8oYIDq82mxHzCHs-9PnYpRQpVH7d7jMdKQnVSrk7K1a_yCD-cYdyn_7gfVohVWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An on-average Maeda-type conjecture in the level aspect</title><source>American Mathematical Society Publications</source><creator>Martin, Kimball</creator><creatorcontrib>Martin, Kimball</creatorcontrib><description>We present a conjecture on the average number of Galois orbits of newforms when fixing the weight and varying the level. This conjecture implies, for instance, that the central LL-values (resp. LL-derivatives) are nonzero for 100100% of even weight prime level newforms with root number +1+1 (resp. −1-1).</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/15328</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Research article</subject><ispartof>Proceedings of the American Mathematical Society, 2021-04, Vol.149 (4), p.1373-1386</ispartof><rights>Copyright 2021 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a327t-49c1109afd8a36d04082fa620a779f5b240ada29d5e676eafae2c42f90867b5a3</citedby><cites>FETCH-LOGICAL-a327t-49c1109afd8a36d04082fa620a779f5b240ada29d5e676eafae2c42f90867b5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/proc/2021-149-04/S0002-9939-2021-15328-8/S0002-9939-2021-15328-8.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/proc/2021-149-04/S0002-9939-2021-15328-8/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,776,780,23307,27901,27902,77805,77815</link.rule.ids></links><search><creatorcontrib>Martin, Kimball</creatorcontrib><title>An on-average Maeda-type conjecture in the level aspect</title><title>Proceedings of the American Mathematical Society</title><addtitle>Proc. Amer. Math. Soc</addtitle><description>We present a conjecture on the average number of Galois orbits of newforms when fixing the weight and varying the level. This conjecture implies, for instance, that the central LL-values (resp. LL-derivatives) are nonzero for 100100% of even weight prime level newforms with root number +1+1 (resp. −1-1).</description><subject>Research article</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9j01Lw0AURQdRMFY3_oLZuBHGvpkk87EsRavQ0o2uw-vkjbakSZiJhf57U-va1eM-Dpd7GLuX8CTBwbSPnZ_KMlf2gmUSrBXaKn3JMgBQwrncXbOblHZjlK4wGTOzlnetwANF_CS-QqpRDMeeuO_aHfnhOxLftnz4It7QgRqOqR_ft-wqYJPo7u9O2MfL8_v8VSzXi7f5bCkwV2YQhfNyHIahtpjrGgqwKqBWgMa4UG5UAVijcnVJ2mjCgKR8oYIDq82mxHzCHs-9PnYpRQpVH7d7jMdKQnVSrk7K1a_yCD-cYdyn_7gfVohVWQ</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Martin, Kimball</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210401</creationdate><title>An on-average Maeda-type conjecture in the level aspect</title><author>Martin, Kimball</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a327t-49c1109afd8a36d04082fa620a779f5b240ada29d5e676eafae2c42f90867b5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Kimball</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Kimball</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An on-average Maeda-type conjecture in the level aspect</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><stitle>Proc. Amer. Math. Soc</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>149</volume><issue>4</issue><spage>1373</spage><epage>1386</epage><pages>1373-1386</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>We present a conjecture on the average number of Galois orbits of newforms when fixing the weight and varying the level. This conjecture implies, for instance, that the central LL-values (resp. LL-derivatives) are nonzero for 100100% of even weight prime level newforms with root number +1+1 (resp. −1-1).</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/proc/15328</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2021-04, Vol.149 (4), p.1373-1386 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_crossref_primary_10_1090_proc_15328 |
source | American Mathematical Society Publications |
subjects | Research article |
title | An on-average Maeda-type conjecture in the level aspect |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T02%3A51%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20on-average%20Maeda-type%20conjecture%20in%20the%20level%20aspect&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Martin,%20Kimball&rft.date=2021-04-01&rft.volume=149&rft.issue=4&rft.spage=1373&rft.epage=1386&rft.pages=1373-1386&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/15328&rft_dat=%3Cams_cross%3E10_1090_proc_15328%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |