Uniform bounds on the image of the arboreal Galois representations attached to non-CM elliptic curves
Let ℓ\ell be a prime number, let FF be a number field, and let E/FE/F be a non-CM elliptic curve with a point α∈E(F)\alpha \in E(F) of infinite order. Attached to the pair (E,α)(E,\alpha ) is the ℓ\ell-adic arboreal Galois representation ωE,α,ℓ∞:Gal(F¯/F)→Zℓ2⋊GL2(Zℓ)\omega _{E,\alpha ,\ell ^{\infty...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2021-02, Vol.149 (2), p.583-589 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 589 |
---|---|
container_issue | 2 |
container_start_page | 583 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 149 |
creator | Cerchia, Michael Rouse, Jeremy |
description | Let ℓ\ell be a prime number, let FF be a number field, and let E/FE/F be a non-CM elliptic curve with a point α∈E(F)\alpha \in E(F) of infinite order. Attached to the pair (E,α)(E,\alpha ) is the ℓ\ell-adic arboreal Galois representation ωE,α,ℓ∞:Gal(F¯/F)→Zℓ2⋊GL2(Zℓ)\omega _{E,\alpha ,\ell ^{\infty }} : \mathrm {Gal}(\overline {F}/F) \to \mathbb {Z}_{\ell }^{2} \rtimes \mathrm {GL}_{2}(\mathbb {Z}_{\ell }) describing the action of Gal(F¯/F)\mathrm {Gal}(\overline {F}/F) on points βn\beta _{n} so that ℓnβn=α\ell ^{n} \beta _{n} = \alpha. We give an explicit bound on the index of the image of ωE,α,ℓ∞\omega _{E,\alpha ,\ell ^{\infty }} depending on how ℓ\ell-divisible the point α\alpha is, and the image of the ordinary ℓ\ell-adic Galois representation. The image of ωE,α,ℓ∞\omega _{E,\alpha ,\ell ^{\infty }} is connected with the density of primes p\mathfrak {p} for which α∈E(Fp)\alpha \in E(\mathbb {F}_{\mathfrak {p}}) has order coprime to ℓ\ell. |
doi_str_mv | 10.1090/proc/15254 |
format | Article |
fullrecord | <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_15254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_proc_15254</sourcerecordid><originalsourceid>FETCH-LOGICAL-a297t-d23d2a59558297bbb60598dd28abe66f4f43793d39d6b99bd053cf9a400e580c3</originalsourceid><addsrcrecordid>eNp9kE9LwzAYh4MoOKcXP0EuXoS6NGna5ChFpzDx4s4lf964SpuUJBP89nabZ08vDzz84H0Qui3JQ0kkWU0xmFXJKa_O0KIkQhS1oPU5WhBCaCElk5foKqWvGUtZNQsEW9-7EEesw97bhIPHeQe4H9Un4OCOoKIOEdSA12oIfcIRpggJfFa5Dz5hlbMyO7A4B-yDL9o3DMPQT7k32OzjN6RrdOHUkODm7y7R9vnpo30pNu_r1_ZxUygqm1xYyixVXHIuZtZa14RLYS0VSkNdu8pVrJHMMmlrLaW2hDPjpKoIAS6IYUt0f9o1MaQUwXVTnF-JP11JukOg7hCoOwaa5buTrMb0n_cLnHVmrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uniform bounds on the image of the arboreal Galois representations attached to non-CM elliptic curves</title><source>American Mathematical Society</source><creator>Cerchia, Michael ; Rouse, Jeremy</creator><creatorcontrib>Cerchia, Michael ; Rouse, Jeremy</creatorcontrib><description>Let ℓ\ell be a prime number, let FF be a number field, and let E/FE/F be a non-CM elliptic curve with a point α∈E(F)\alpha \in E(F) of infinite order. Attached to the pair (E,α)(E,\alpha ) is the ℓ\ell-adic arboreal Galois representation ωE,α,ℓ∞:Gal(F¯/F)→Zℓ2⋊GL2(Zℓ)\omega _{E,\alpha ,\ell ^{\infty }} : \mathrm {Gal}(\overline {F}/F) \to \mathbb {Z}_{\ell }^{2} \rtimes \mathrm {GL}_{2}(\mathbb {Z}_{\ell }) describing the action of Gal(F¯/F)\mathrm {Gal}(\overline {F}/F) on points βn\beta _{n} so that ℓnβn=α\ell ^{n} \beta _{n} = \alpha. We give an explicit bound on the index of the image of ωE,α,ℓ∞\omega _{E,\alpha ,\ell ^{\infty }} depending on how ℓ\ell-divisible the point α\alpha is, and the image of the ordinary ℓ\ell-adic Galois representation. The image of ωE,α,ℓ∞\omega _{E,\alpha ,\ell ^{\infty }} is connected with the density of primes p\mathfrak {p} for which α∈E(Fp)\alpha \in E(\mathbb {F}_{\mathfrak {p}}) has order coprime to ℓ\ell.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/15254</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Research article</subject><ispartof>Proceedings of the American Mathematical Society, 2021-02, Vol.149 (2), p.583-589</ispartof><rights>Copyright 2020 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a297t-d23d2a59558297bbb60598dd28abe66f4f43793d39d6b99bd053cf9a400e580c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/proc/2021-149-02/S0002-9939-2020-15254-9/S0002-9939-2020-15254-9.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/proc/2021-149-02/S0002-9939-2020-15254-9/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,776,780,23307,27901,27902,77579,77589</link.rule.ids></links><search><creatorcontrib>Cerchia, Michael</creatorcontrib><creatorcontrib>Rouse, Jeremy</creatorcontrib><title>Uniform bounds on the image of the arboreal Galois representations attached to non-CM elliptic curves</title><title>Proceedings of the American Mathematical Society</title><addtitle>Proc. Amer. Math. Soc</addtitle><description>Let ℓ\ell be a prime number, let FF be a number field, and let E/FE/F be a non-CM elliptic curve with a point α∈E(F)\alpha \in E(F) of infinite order. Attached to the pair (E,α)(E,\alpha ) is the ℓ\ell-adic arboreal Galois representation ωE,α,ℓ∞:Gal(F¯/F)→Zℓ2⋊GL2(Zℓ)\omega _{E,\alpha ,\ell ^{\infty }} : \mathrm {Gal}(\overline {F}/F) \to \mathbb {Z}_{\ell }^{2} \rtimes \mathrm {GL}_{2}(\mathbb {Z}_{\ell }) describing the action of Gal(F¯/F)\mathrm {Gal}(\overline {F}/F) on points βn\beta _{n} so that ℓnβn=α\ell ^{n} \beta _{n} = \alpha. We give an explicit bound on the index of the image of ωE,α,ℓ∞\omega _{E,\alpha ,\ell ^{\infty }} depending on how ℓ\ell-divisible the point α\alpha is, and the image of the ordinary ℓ\ell-adic Galois representation. The image of ωE,α,ℓ∞\omega _{E,\alpha ,\ell ^{\infty }} is connected with the density of primes p\mathfrak {p} for which α∈E(Fp)\alpha \in E(\mathbb {F}_{\mathfrak {p}}) has order coprime to ℓ\ell.</description><subject>Research article</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LwzAYh4MoOKcXP0EuXoS6NGna5ChFpzDx4s4lf964SpuUJBP89nabZ08vDzz84H0Qui3JQ0kkWU0xmFXJKa_O0KIkQhS1oPU5WhBCaCElk5foKqWvGUtZNQsEW9-7EEesw97bhIPHeQe4H9Un4OCOoKIOEdSA12oIfcIRpggJfFa5Dz5hlbMyO7A4B-yDL9o3DMPQT7k32OzjN6RrdOHUkODm7y7R9vnpo30pNu_r1_ZxUygqm1xYyixVXHIuZtZa14RLYS0VSkNdu8pVrJHMMmlrLaW2hDPjpKoIAS6IYUt0f9o1MaQUwXVTnF-JP11JukOg7hCoOwaa5buTrMb0n_cLnHVmrQ</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Cerchia, Michael</creator><creator>Rouse, Jeremy</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210201</creationdate><title>Uniform bounds on the image of the arboreal Galois representations attached to non-CM elliptic curves</title><author>Cerchia, Michael ; Rouse, Jeremy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a297t-d23d2a59558297bbb60598dd28abe66f4f43793d39d6b99bd053cf9a400e580c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cerchia, Michael</creatorcontrib><creatorcontrib>Rouse, Jeremy</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cerchia, Michael</au><au>Rouse, Jeremy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform bounds on the image of the arboreal Galois representations attached to non-CM elliptic curves</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><stitle>Proc. Amer. Math. Soc</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>149</volume><issue>2</issue><spage>583</spage><epage>589</epage><pages>583-589</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>Let ℓ\ell be a prime number, let FF be a number field, and let E/FE/F be a non-CM elliptic curve with a point α∈E(F)\alpha \in E(F) of infinite order. Attached to the pair (E,α)(E,\alpha ) is the ℓ\ell-adic arboreal Galois representation ωE,α,ℓ∞:Gal(F¯/F)→Zℓ2⋊GL2(Zℓ)\omega _{E,\alpha ,\ell ^{\infty }} : \mathrm {Gal}(\overline {F}/F) \to \mathbb {Z}_{\ell }^{2} \rtimes \mathrm {GL}_{2}(\mathbb {Z}_{\ell }) describing the action of Gal(F¯/F)\mathrm {Gal}(\overline {F}/F) on points βn\beta _{n} so that ℓnβn=α\ell ^{n} \beta _{n} = \alpha. We give an explicit bound on the index of the image of ωE,α,ℓ∞\omega _{E,\alpha ,\ell ^{\infty }} depending on how ℓ\ell-divisible the point α\alpha is, and the image of the ordinary ℓ\ell-adic Galois representation. The image of ωE,α,ℓ∞\omega _{E,\alpha ,\ell ^{\infty }} is connected with the density of primes p\mathfrak {p} for which α∈E(Fp)\alpha \in E(\mathbb {F}_{\mathfrak {p}}) has order coprime to ℓ\ell.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/proc/15254</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2021-02, Vol.149 (2), p.583-589 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_crossref_primary_10_1090_proc_15254 |
source | American Mathematical Society |
subjects | Research article |
title | Uniform bounds on the image of the arboreal Galois representations attached to non-CM elliptic curves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A02%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20bounds%20on%20the%20image%20of%20the%20arboreal%20Galois%20representations%20attached%20to%20non-CM%20elliptic%20curves&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Cerchia,%20Michael&rft.date=2021-02-01&rft.volume=149&rft.issue=2&rft.spage=583&rft.epage=589&rft.pages=583-589&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/15254&rft_dat=%3Cams_cross%3E10_1090_proc_15254%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |