Convex domains, Hankel operators, and maximal estimates
Let 1≤q≤(n−1)1\leq q\leq (n-1). We first show that a necessary condition for a Hankel operator on (0,q−1)(0,q-1)-forms on a convex domain to be compact is that its symbol is holomorphic along qq-dimensional analytic varieties in the boundary. Because maximal estimates (equivalently, a comparable eig...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2020-02, Vol.148 (2), p.751-764 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 764 |
---|---|
container_issue | 2 |
container_start_page | 751 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 148 |
creator | Çeli̇k, Mehmet Şahutoğlu, Sönmez Straube, Emil J. |
description | Let 1≤q≤(n−1)1\leq q\leq (n-1). We first show that a necessary condition for a Hankel operator on (0,q−1)(0,q-1)-forms on a convex domain to be compact is that its symbol is holomorphic along qq-dimensional analytic varieties in the boundary. Because maximal estimates (equivalently, a comparable eigenvalues condition on the Levi form of the boundary) turn out to be favorable for compactness of Hankel operators, this result then implies that on a convex domain, maximal estimates exclude analytic varieties from the boundary, except ones of top dimension (n−1)(n-1) (and their subvarieties). Some of our techniques apply to general pseudoconvex domains to show that if the Levi form has comparable eigenvalues, or equivalently, if the domain admits maximal estimates, then compactness and subellipticity hold for forms at some level qq if and only if they hold at all levels. |
doi_str_mv | 10.1090/proc/14729 |
format | Article |
fullrecord | <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_14729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_proc_14729</sourcerecordid><originalsourceid>FETCH-LOGICAL-a297t-f00f9c97a36a2050c57accee8a5512febc1f11f286370bf312570972d705ae083</originalsourceid><addsrcrecordid>eNp9j0FLxDAQhYMoWFcv_oJevIh1Z9JNkxylqCsseNFzmU0nsNo2JSmy_nu7rmdPj3l8DO8T4hrhHsHCcozBLXGlpT0RGYIxRWVkdSoyAJCFtaU9Fxcpfcwn2pXOhK7D8MX7vA097YZ0l69p-OQuDyNHmkKcGxravKf9rqcu5zTNOXG6FGeeusRXf7kQ70-Pb_W62Lw-v9QPm4Kk1VPhAbx1VlNZkQQFTmlyjtmQUig9bx16RC9NVWrY-hKl0mC1bDUoYjDlQtwe_7oYUorsmzHOC-J3g9AclJuDcvOrPMM3R5j69B_3A65GVXU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Convex domains, Hankel operators, and maximal estimates</title><source>American Mathematical Society Publications</source><creator>Çeli̇k, Mehmet ; Şahutoğlu, Sönmez ; Straube, Emil J.</creator><creatorcontrib>Çeli̇k, Mehmet ; Şahutoğlu, Sönmez ; Straube, Emil J.</creatorcontrib><description>Let 1≤q≤(n−1)1\leq q\leq (n-1). We first show that a necessary condition for a Hankel operator on (0,q−1)(0,q-1)-forms on a convex domain to be compact is that its symbol is holomorphic along qq-dimensional analytic varieties in the boundary. Because maximal estimates (equivalently, a comparable eigenvalues condition on the Levi form of the boundary) turn out to be favorable for compactness of Hankel operators, this result then implies that on a convex domain, maximal estimates exclude analytic varieties from the boundary, except ones of top dimension (n−1)(n-1) (and their subvarieties). Some of our techniques apply to general pseudoconvex domains to show that if the Levi form has comparable eigenvalues, or equivalently, if the domain admits maximal estimates, then compactness and subellipticity hold for forms at some level qq if and only if they hold at all levels.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/14729</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Research article</subject><ispartof>Proceedings of the American Mathematical Society, 2020-02, Vol.148 (2), p.751-764</ispartof><rights>Copyright 2019 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a297t-f00f9c97a36a2050c57accee8a5512febc1f11f286370bf312570972d705ae083</citedby><cites>FETCH-LOGICAL-a297t-f00f9c97a36a2050c57accee8a5512febc1f11f286370bf312570972d705ae083</cites><orcidid>0000-0003-0490-0113</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/proc/2020-148-02/S0002-9939-2019-14729-8/S0002-9939-2019-14729-8.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/proc/2020-148-02/S0002-9939-2019-14729-8/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,776,780,23309,27903,27904,77581,77591</link.rule.ids></links><search><creatorcontrib>Çeli̇k, Mehmet</creatorcontrib><creatorcontrib>Şahutoğlu, Sönmez</creatorcontrib><creatorcontrib>Straube, Emil J.</creatorcontrib><title>Convex domains, Hankel operators, and maximal estimates</title><title>Proceedings of the American Mathematical Society</title><addtitle>Proc. Amer. Math. Soc</addtitle><description>Let 1≤q≤(n−1)1\leq q\leq (n-1). We first show that a necessary condition for a Hankel operator on (0,q−1)(0,q-1)-forms on a convex domain to be compact is that its symbol is holomorphic along qq-dimensional analytic varieties in the boundary. Because maximal estimates (equivalently, a comparable eigenvalues condition on the Levi form of the boundary) turn out to be favorable for compactness of Hankel operators, this result then implies that on a convex domain, maximal estimates exclude analytic varieties from the boundary, except ones of top dimension (n−1)(n-1) (and their subvarieties). Some of our techniques apply to general pseudoconvex domains to show that if the Levi form has comparable eigenvalues, or equivalently, if the domain admits maximal estimates, then compactness and subellipticity hold for forms at some level qq if and only if they hold at all levels.</description><subject>Research article</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9j0FLxDAQhYMoWFcv_oJevIh1Z9JNkxylqCsseNFzmU0nsNo2JSmy_nu7rmdPj3l8DO8T4hrhHsHCcozBLXGlpT0RGYIxRWVkdSoyAJCFtaU9Fxcpfcwn2pXOhK7D8MX7vA097YZ0l69p-OQuDyNHmkKcGxravKf9rqcu5zTNOXG6FGeeusRXf7kQ70-Pb_W62Lw-v9QPm4Kk1VPhAbx1VlNZkQQFTmlyjtmQUig9bx16RC9NVWrY-hKl0mC1bDUoYjDlQtwe_7oYUorsmzHOC-J3g9AclJuDcvOrPMM3R5j69B_3A65GVXU</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Çeli̇k, Mehmet</creator><creator>Şahutoğlu, Sönmez</creator><creator>Straube, Emil J.</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0490-0113</orcidid></search><sort><creationdate>20200201</creationdate><title>Convex domains, Hankel operators, and maximal estimates</title><author>Çeli̇k, Mehmet ; Şahutoğlu, Sönmez ; Straube, Emil J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a297t-f00f9c97a36a2050c57accee8a5512febc1f11f286370bf312570972d705ae083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Çeli̇k, Mehmet</creatorcontrib><creatorcontrib>Şahutoğlu, Sönmez</creatorcontrib><creatorcontrib>Straube, Emil J.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Çeli̇k, Mehmet</au><au>Şahutoğlu, Sönmez</au><au>Straube, Emil J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convex domains, Hankel operators, and maximal estimates</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><stitle>Proc. Amer. Math. Soc</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>148</volume><issue>2</issue><spage>751</spage><epage>764</epage><pages>751-764</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>Let 1≤q≤(n−1)1\leq q\leq (n-1). We first show that a necessary condition for a Hankel operator on (0,q−1)(0,q-1)-forms on a convex domain to be compact is that its symbol is holomorphic along qq-dimensional analytic varieties in the boundary. Because maximal estimates (equivalently, a comparable eigenvalues condition on the Levi form of the boundary) turn out to be favorable for compactness of Hankel operators, this result then implies that on a convex domain, maximal estimates exclude analytic varieties from the boundary, except ones of top dimension (n−1)(n-1) (and their subvarieties). Some of our techniques apply to general pseudoconvex domains to show that if the Levi form has comparable eigenvalues, or equivalently, if the domain admits maximal estimates, then compactness and subellipticity hold for forms at some level qq if and only if they hold at all levels.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/proc/14729</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0490-0113</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2020-02, Vol.148 (2), p.751-764 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_crossref_primary_10_1090_proc_14729 |
source | American Mathematical Society Publications |
subjects | Research article |
title | Convex domains, Hankel operators, and maximal estimates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A00%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convex%20domains,%20Hankel%20operators,%20and%20maximal%20estimates&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=%C3%87eli%CC%87k,%20Mehmet&rft.date=2020-02-01&rft.volume=148&rft.issue=2&rft.spage=751&rft.epage=764&rft.pages=751-764&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/14729&rft_dat=%3Cams_cross%3E10_1090_proc_14729%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |