Convex domains, Hankel operators, and maximal estimates

Let 1≤q≤(n−1)1\leq q\leq (n-1). We first show that a necessary condition for a Hankel operator on (0,q−1)(0,q-1)-forms on a convex domain to be compact is that its symbol is holomorphic along qq-dimensional analytic varieties in the boundary. Because maximal estimates (equivalently, a comparable eig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2020-02, Vol.148 (2), p.751-764
Hauptverfasser: Çeli̇k, Mehmet, Şahutoğlu, Sönmez, Straube, Emil J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 764
container_issue 2
container_start_page 751
container_title Proceedings of the American Mathematical Society
container_volume 148
creator Çeli̇k, Mehmet
Şahutoğlu, Sönmez
Straube, Emil J.
description Let 1≤q≤(n−1)1\leq q\leq (n-1). We first show that a necessary condition for a Hankel operator on (0,q−1)(0,q-1)-forms on a convex domain to be compact is that its symbol is holomorphic along qq-dimensional analytic varieties in the boundary. Because maximal estimates (equivalently, a comparable eigenvalues condition on the Levi form of the boundary) turn out to be favorable for compactness of Hankel operators, this result then implies that on a convex domain, maximal estimates exclude analytic varieties from the boundary, except ones of top dimension (n−1)(n-1) (and their subvarieties). Some of our techniques apply to general pseudoconvex domains to show that if the Levi form has comparable eigenvalues, or equivalently, if the domain admits maximal estimates, then compactness and subellipticity hold for forms at some level qq if and only if they hold at all levels.
doi_str_mv 10.1090/proc/14729
format Article
fullrecord <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_14729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_proc_14729</sourcerecordid><originalsourceid>FETCH-LOGICAL-a297t-f00f9c97a36a2050c57accee8a5512febc1f11f286370bf312570972d705ae083</originalsourceid><addsrcrecordid>eNp9j0FLxDAQhYMoWFcv_oJevIh1Z9JNkxylqCsseNFzmU0nsNo2JSmy_nu7rmdPj3l8DO8T4hrhHsHCcozBLXGlpT0RGYIxRWVkdSoyAJCFtaU9Fxcpfcwn2pXOhK7D8MX7vA097YZ0l69p-OQuDyNHmkKcGxravKf9rqcu5zTNOXG6FGeeusRXf7kQ70-Pb_W62Lw-v9QPm4Kk1VPhAbx1VlNZkQQFTmlyjtmQUig9bx16RC9NVWrY-hKl0mC1bDUoYjDlQtwe_7oYUorsmzHOC-J3g9AclJuDcvOrPMM3R5j69B_3A65GVXU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Convex domains, Hankel operators, and maximal estimates</title><source>American Mathematical Society Publications</source><creator>Çeli̇k, Mehmet ; Şahutoğlu, Sönmez ; Straube, Emil J.</creator><creatorcontrib>Çeli̇k, Mehmet ; Şahutoğlu, Sönmez ; Straube, Emil J.</creatorcontrib><description>Let 1≤q≤(n−1)1\leq q\leq (n-1). We first show that a necessary condition for a Hankel operator on (0,q−1)(0,q-1)-forms on a convex domain to be compact is that its symbol is holomorphic along qq-dimensional analytic varieties in the boundary. Because maximal estimates (equivalently, a comparable eigenvalues condition on the Levi form of the boundary) turn out to be favorable for compactness of Hankel operators, this result then implies that on a convex domain, maximal estimates exclude analytic varieties from the boundary, except ones of top dimension (n−1)(n-1) (and their subvarieties). Some of our techniques apply to general pseudoconvex domains to show that if the Levi form has comparable eigenvalues, or equivalently, if the domain admits maximal estimates, then compactness and subellipticity hold for forms at some level qq if and only if they hold at all levels.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/14729</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Research article</subject><ispartof>Proceedings of the American Mathematical Society, 2020-02, Vol.148 (2), p.751-764</ispartof><rights>Copyright 2019 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a297t-f00f9c97a36a2050c57accee8a5512febc1f11f286370bf312570972d705ae083</citedby><cites>FETCH-LOGICAL-a297t-f00f9c97a36a2050c57accee8a5512febc1f11f286370bf312570972d705ae083</cites><orcidid>0000-0003-0490-0113</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/proc/2020-148-02/S0002-9939-2019-14729-8/S0002-9939-2019-14729-8.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/proc/2020-148-02/S0002-9939-2019-14729-8/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,776,780,23309,27903,27904,77581,77591</link.rule.ids></links><search><creatorcontrib>Çeli̇k, Mehmet</creatorcontrib><creatorcontrib>Şahutoğlu, Sönmez</creatorcontrib><creatorcontrib>Straube, Emil J.</creatorcontrib><title>Convex domains, Hankel operators, and maximal estimates</title><title>Proceedings of the American Mathematical Society</title><addtitle>Proc. Amer. Math. Soc</addtitle><description>Let 1≤q≤(n−1)1\leq q\leq (n-1). We first show that a necessary condition for a Hankel operator on (0,q−1)(0,q-1)-forms on a convex domain to be compact is that its symbol is holomorphic along qq-dimensional analytic varieties in the boundary. Because maximal estimates (equivalently, a comparable eigenvalues condition on the Levi form of the boundary) turn out to be favorable for compactness of Hankel operators, this result then implies that on a convex domain, maximal estimates exclude analytic varieties from the boundary, except ones of top dimension (n−1)(n-1) (and their subvarieties). Some of our techniques apply to general pseudoconvex domains to show that if the Levi form has comparable eigenvalues, or equivalently, if the domain admits maximal estimates, then compactness and subellipticity hold for forms at some level qq if and only if they hold at all levels.</description><subject>Research article</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9j0FLxDAQhYMoWFcv_oJevIh1Z9JNkxylqCsseNFzmU0nsNo2JSmy_nu7rmdPj3l8DO8T4hrhHsHCcozBLXGlpT0RGYIxRWVkdSoyAJCFtaU9Fxcpfcwn2pXOhK7D8MX7vA097YZ0l69p-OQuDyNHmkKcGxravKf9rqcu5zTNOXG6FGeeusRXf7kQ70-Pb_W62Lw-v9QPm4Kk1VPhAbx1VlNZkQQFTmlyjtmQUig9bx16RC9NVWrY-hKl0mC1bDUoYjDlQtwe_7oYUorsmzHOC-J3g9AclJuDcvOrPMM3R5j69B_3A65GVXU</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Çeli̇k, Mehmet</creator><creator>Şahutoğlu, Sönmez</creator><creator>Straube, Emil J.</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0490-0113</orcidid></search><sort><creationdate>20200201</creationdate><title>Convex domains, Hankel operators, and maximal estimates</title><author>Çeli̇k, Mehmet ; Şahutoğlu, Sönmez ; Straube, Emil J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a297t-f00f9c97a36a2050c57accee8a5512febc1f11f286370bf312570972d705ae083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Çeli̇k, Mehmet</creatorcontrib><creatorcontrib>Şahutoğlu, Sönmez</creatorcontrib><creatorcontrib>Straube, Emil J.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Çeli̇k, Mehmet</au><au>Şahutoğlu, Sönmez</au><au>Straube, Emil J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convex domains, Hankel operators, and maximal estimates</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><stitle>Proc. Amer. Math. Soc</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>148</volume><issue>2</issue><spage>751</spage><epage>764</epage><pages>751-764</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>Let 1≤q≤(n−1)1\leq q\leq (n-1). We first show that a necessary condition for a Hankel operator on (0,q−1)(0,q-1)-forms on a convex domain to be compact is that its symbol is holomorphic along qq-dimensional analytic varieties in the boundary. Because maximal estimates (equivalently, a comparable eigenvalues condition on the Levi form of the boundary) turn out to be favorable for compactness of Hankel operators, this result then implies that on a convex domain, maximal estimates exclude analytic varieties from the boundary, except ones of top dimension (n−1)(n-1) (and their subvarieties). Some of our techniques apply to general pseudoconvex domains to show that if the Levi form has comparable eigenvalues, or equivalently, if the domain admits maximal estimates, then compactness and subellipticity hold for forms at some level qq if and only if they hold at all levels.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/proc/14729</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0490-0113</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2020-02, Vol.148 (2), p.751-764
issn 0002-9939
1088-6826
language eng
recordid cdi_crossref_primary_10_1090_proc_14729
source American Mathematical Society Publications
subjects Research article
title Convex domains, Hankel operators, and maximal estimates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A00%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convex%20domains,%20Hankel%20operators,%20and%20maximal%20estimates&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=%C3%87eli%CC%87k,%20Mehmet&rft.date=2020-02-01&rft.volume=148&rft.issue=2&rft.spage=751&rft.epage=764&rft.pages=751-764&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/14729&rft_dat=%3Cams_cross%3E10_1090_proc_14729%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true