Kunneth formula for graded rings associated to -theories of Rost motives
In this paper, we study the graded ring g r ∗ ( X ) gr^*(X) defined by K K -theory of a twist flag variety X X . In particular, the Kunneth map g r ∗ ( R ′ ) ⊗ g r ∗ ( R ′ ) → g r ∗ ( R ) gr^*(R’)\otimes gr^*(R’)\to gr^*(R) is studied explicitly for an original Rost motive R ′ R’ and a generalized R...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2019-10, Vol.147 (10), p.4513-4526 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4526 |
---|---|
container_issue | 10 |
container_start_page | 4513 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 147 |
creator | Yagita, Nobuaki |
description | In this paper, we study the graded ring
g
r
∗
(
X
)
gr^*(X)
defined by
K
K
-theory of a twist flag variety
X
X
. In particular, the Kunneth map
g
r
∗
(
R
′
)
⊗
g
r
∗
(
R
′
)
→
g
r
∗
(
R
)
gr^*(R’)\otimes gr^*(R’)\to gr^*(R)
is studied explicitly for an original Rost motive
R
′
R’
and a generalized Rost motive
R
R
. Using this, we give examples
T
o
r
(
X
)
2
≠
0
Tor(X)^2\not =0
for the ideal
T
o
r
(
X
)
Tor(X)
of torsion elements in the Chow ring
C
H
∗
(
X
)
CH^*(X)
. |
doi_str_mv | 10.1090/proc/14622 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_14622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_proc_14622</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1090_proc_146223</originalsourceid><addsrcrecordid>eNqVjr0KwjAURoMoWH8WnyCzEE3SUptZFMFN3EOoiUZsr9wbBd9eK76A0-H7OMNhbKbkQkkjl3eEeqmKUusey5SsKlFWuuyzTEqphTG5GbIR0fUzlSlWGdvtH23r04UHwOZxcx35Gd3JnzjG9kzcEUEdXfocCbhIFw8YPXEI_ACUeAMpPj1N2CC4G_npj2M2326O652oEYjQB3vH2Dh8WSVt12q7Vvttzf-S3-DqRsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Kunneth formula for graded rings associated to -theories of Rost motives</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>American Mathematical Society Publications</source><creator>Yagita, Nobuaki</creator><creatorcontrib>Yagita, Nobuaki</creatorcontrib><description>In this paper, we study the graded ring
g
r
∗
(
X
)
gr^*(X)
defined by
K
K
-theory of a twist flag variety
X
X
. In particular, the Kunneth map
g
r
∗
(
R
′
)
⊗
g
r
∗
(
R
′
)
→
g
r
∗
(
R
)
gr^*(R’)\otimes gr^*(R’)\to gr^*(R)
is studied explicitly for an original Rost motive
R
′
R’
and a generalized Rost motive
R
R
. Using this, we give examples
T
o
r
(
X
)
2
≠
0
Tor(X)^2\not =0
for the ideal
T
o
r
(
X
)
Tor(X)
of torsion elements in the Chow ring
C
H
∗
(
X
)
CH^*(X)
.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/14622</identifier><language>eng</language><ispartof>Proceedings of the American Mathematical Society, 2019-10, Vol.147 (10), p.4513-4526</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1090_proc_146223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Yagita, Nobuaki</creatorcontrib><title>Kunneth formula for graded rings associated to -theories of Rost motives</title><title>Proceedings of the American Mathematical Society</title><description>In this paper, we study the graded ring
g
r
∗
(
X
)
gr^*(X)
defined by
K
K
-theory of a twist flag variety
X
X
. In particular, the Kunneth map
g
r
∗
(
R
′
)
⊗
g
r
∗
(
R
′
)
→
g
r
∗
(
R
)
gr^*(R’)\otimes gr^*(R’)\to gr^*(R)
is studied explicitly for an original Rost motive
R
′
R’
and a generalized Rost motive
R
R
. Using this, we give examples
T
o
r
(
X
)
2
≠
0
Tor(X)^2\not =0
for the ideal
T
o
r
(
X
)
Tor(X)
of torsion elements in the Chow ring
C
H
∗
(
X
)
CH^*(X)
.</description><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqVjr0KwjAURoMoWH8WnyCzEE3SUptZFMFN3EOoiUZsr9wbBd9eK76A0-H7OMNhbKbkQkkjl3eEeqmKUusey5SsKlFWuuyzTEqphTG5GbIR0fUzlSlWGdvtH23r04UHwOZxcx35Gd3JnzjG9kzcEUEdXfocCbhIFw8YPXEI_ACUeAMpPj1N2CC4G_npj2M2326O652oEYjQB3vH2Dh8WSVt12q7Vvttzf-S3-DqRsg</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Yagita, Nobuaki</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201910</creationdate><title>Kunneth formula for graded rings associated to -theories of Rost motives</title><author>Yagita, Nobuaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1090_proc_146223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yagita, Nobuaki</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yagita, Nobuaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kunneth formula for graded rings associated to -theories of Rost motives</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2019-10</date><risdate>2019</risdate><volume>147</volume><issue>10</issue><spage>4513</spage><epage>4526</epage><pages>4513-4526</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>In this paper, we study the graded ring
g
r
∗
(
X
)
gr^*(X)
defined by
K
K
-theory of a twist flag variety
X
X
. In particular, the Kunneth map
g
r
∗
(
R
′
)
⊗
g
r
∗
(
R
′
)
→
g
r
∗
(
R
)
gr^*(R’)\otimes gr^*(R’)\to gr^*(R)
is studied explicitly for an original Rost motive
R
′
R’
and a generalized Rost motive
R
R
. Using this, we give examples
T
o
r
(
X
)
2
≠
0
Tor(X)^2\not =0
for the ideal
T
o
r
(
X
)
Tor(X)
of torsion elements in the Chow ring
C
H
∗
(
X
)
CH^*(X)
.</abstract><doi>10.1090/proc/14622</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2019-10, Vol.147 (10), p.4513-4526 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_crossref_primary_10_1090_proc_14622 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; American Mathematical Society Publications |
title | Kunneth formula for graded rings associated to -theories of Rost motives |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A02%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kunneth%20formula%20for%20graded%20rings%20associated%20to%20-theories%20of%20Rost%20motives&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Yagita,%20Nobuaki&rft.date=2019-10&rft.volume=147&rft.issue=10&rft.spage=4513&rft.epage=4526&rft.pages=4513-4526&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/14622&rft_dat=%3Ccrossref%3E10_1090_proc_14622%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |