Exponential fields and Conway’s omega-map

Inspired by Conway’s surreal numbers, we study real closed fields whose value group is isomorphic to the additive reduct of the field. We call such fields omega-fields and we prove that any omega-field of bounded Hahn series with real coefficients admits an exponential function making it into a mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2023-03, Vol.151 (6), p.2655-2669
Hauptverfasser: Berarducci, Alessandro, Kuhlmann, Salma, Mantova, Vincenzo, Matusinski, Mickaël
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2669
container_issue 6
container_start_page 2655
container_title Proceedings of the American Mathematical Society
container_volume 151
creator Berarducci, Alessandro
Kuhlmann, Salma
Mantova, Vincenzo
Matusinski, Mickaël
description Inspired by Conway’s surreal numbers, we study real closed fields whose value group is isomorphic to the additive reduct of the field. We call such fields omega-fields and we prove that any omega-field of bounded Hahn series with real coefficients admits an exponential function making it into a model of the theory of the real exponential field. We also consider relative versions with more general coefficient fields.
doi_str_mv 10.1090/proc/14577
format Article
fullrecord <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_14577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_proc_14577</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1717-48caaf6cfee1944ec48ea19105ea24b823769d4651ac2305a30edb7a53a3dc693</originalsourceid><addsrcrecordid>eNp9j8tKxEAQRRtRMI5u_IJs3CjtVKU7_VhKGB8w4EbXoaZTkUhepAWdnb_h7_klZhzXri4XDvdyhDhHuEbwsBynISxR59YeiATBOWlcZg5FAgCZ9F75Y3ES4-tc0WubiKvVxzj03L811KZ1w20VU-qrtBj6d9p-f37FdOj4hWRH46k4qqmNfPaXC_F8u3oq7uX68e6huFlLQotWaheIahNq5vlDc9COCT1CzpTpjcuUNb7SJkcKmYKcFHC1sZQrUlUwXi3E5X43TEOME9flODUdTdsSodxpljvN8ldzhi_2MHXxP-4HzzBSLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Exponential fields and Conway’s omega-map</title><source>American Mathematical Society Publications</source><creator>Berarducci, Alessandro ; Kuhlmann, Salma ; Mantova, Vincenzo ; Matusinski, Mickaël</creator><creatorcontrib>Berarducci, Alessandro ; Kuhlmann, Salma ; Mantova, Vincenzo ; Matusinski, Mickaël</creatorcontrib><description>Inspired by Conway’s surreal numbers, we study real closed fields whose value group is isomorphic to the additive reduct of the field. We call such fields omega-fields and we prove that any omega-field of bounded Hahn series with real coefficients admits an exponential function making it into a model of the theory of the real exponential field. We also consider relative versions with more general coefficient fields.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/14577</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Research article</subject><ispartof>Proceedings of the American Mathematical Society, 2023-03, Vol.151 (6), p.2655-2669</ispartof><rights>Copyright 2023 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a1717-48caaf6cfee1944ec48ea19105ea24b823769d4651ac2305a30edb7a53a3dc693</cites><orcidid>0000-0002-8454-7315 ; 0000-0001-5971-9595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/proc/2023-151-06/S0002-9939-2023-14577-3/S0002-9939-2023-14577-3.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/proc/2023-151-06/S0002-9939-2023-14577-3/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,776,780,23307,27901,27902,77578,77588</link.rule.ids></links><search><creatorcontrib>Berarducci, Alessandro</creatorcontrib><creatorcontrib>Kuhlmann, Salma</creatorcontrib><creatorcontrib>Mantova, Vincenzo</creatorcontrib><creatorcontrib>Matusinski, Mickaël</creatorcontrib><title>Exponential fields and Conway’s omega-map</title><title>Proceedings of the American Mathematical Society</title><addtitle>Proc. Amer. Math. Soc</addtitle><description>Inspired by Conway’s surreal numbers, we study real closed fields whose value group is isomorphic to the additive reduct of the field. We call such fields omega-fields and we prove that any omega-field of bounded Hahn series with real coefficients admits an exponential function making it into a model of the theory of the real exponential field. We also consider relative versions with more general coefficient fields.</description><subject>Research article</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9j8tKxEAQRRtRMI5u_IJs3CjtVKU7_VhKGB8w4EbXoaZTkUhepAWdnb_h7_klZhzXri4XDvdyhDhHuEbwsBynISxR59YeiATBOWlcZg5FAgCZ9F75Y3ES4-tc0WubiKvVxzj03L811KZ1w20VU-qrtBj6d9p-f37FdOj4hWRH46k4qqmNfPaXC_F8u3oq7uX68e6huFlLQotWaheIahNq5vlDc9COCT1CzpTpjcuUNb7SJkcKmYKcFHC1sZQrUlUwXi3E5X43TEOME9flODUdTdsSodxpljvN8ldzhi_2MHXxP-4HzzBSLA</recordid><startdate>20230321</startdate><enddate>20230321</enddate><creator>Berarducci, Alessandro</creator><creator>Kuhlmann, Salma</creator><creator>Mantova, Vincenzo</creator><creator>Matusinski, Mickaël</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8454-7315</orcidid><orcidid>https://orcid.org/0000-0001-5971-9595</orcidid></search><sort><creationdate>20230321</creationdate><title>Exponential fields and Conway’s omega-map</title><author>Berarducci, Alessandro ; Kuhlmann, Salma ; Mantova, Vincenzo ; Matusinski, Mickaël</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1717-48caaf6cfee1944ec48ea19105ea24b823769d4651ac2305a30edb7a53a3dc693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berarducci, Alessandro</creatorcontrib><creatorcontrib>Kuhlmann, Salma</creatorcontrib><creatorcontrib>Mantova, Vincenzo</creatorcontrib><creatorcontrib>Matusinski, Mickaël</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berarducci, Alessandro</au><au>Kuhlmann, Salma</au><au>Mantova, Vincenzo</au><au>Matusinski, Mickaël</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential fields and Conway’s omega-map</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><stitle>Proc. Amer. Math. Soc</stitle><date>2023-03-21</date><risdate>2023</risdate><volume>151</volume><issue>6</issue><spage>2655</spage><epage>2669</epage><pages>2655-2669</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>Inspired by Conway’s surreal numbers, we study real closed fields whose value group is isomorphic to the additive reduct of the field. We call such fields omega-fields and we prove that any omega-field of bounded Hahn series with real coefficients admits an exponential function making it into a model of the theory of the real exponential field. We also consider relative versions with more general coefficient fields.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/proc/14577</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8454-7315</orcidid><orcidid>https://orcid.org/0000-0001-5971-9595</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2023-03, Vol.151 (6), p.2655-2669
issn 0002-9939
1088-6826
language eng
recordid cdi_crossref_primary_10_1090_proc_14577
source American Mathematical Society Publications
subjects Research article
title Exponential fields and Conway’s omega-map
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A21%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20fields%20and%20Conway%E2%80%99s%20omega-map&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Berarducci,%20Alessandro&rft.date=2023-03-21&rft.volume=151&rft.issue=6&rft.spage=2655&rft.epage=2669&rft.pages=2655-2669&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/14577&rft_dat=%3Cams_cross%3E10_1090_proc_14577%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true