Primes in prime number races
Rubinstein and Sarnak have shown, conditional on the Riemann hypothesis (RH) and the linear independence hypothesis (LI) on the nonreal zeros of ζ(s)\zeta (s), that the set of real numbers x≥2x\ge 2 for which π(x)>li(x)\pi (x)>\operatorname {li}(x) has a logarithmic density, which they comput...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2019-09, Vol.147 (9), p.3743-3757 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3757 |
---|---|
container_issue | 9 |
container_start_page | 3743 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 147 |
creator | Lichtman, Jared Duker Martin, Greg Pomerance, Carl |
description | Rubinstein and Sarnak have shown, conditional on the Riemann hypothesis (RH) and the linear independence hypothesis (LI) on the nonreal zeros of ζ(s)\zeta (s), that the set of real numbers x≥2x\ge 2 for which π(x)>li(x)\pi (x)>\operatorname {li}(x) has a logarithmic density, which they computed to be about 2.6×10−72.6\times 10^{-7}. A natural problem is to examine the actual primes in this race. We prove, assuming RH and LI, that the logarithmic density of the set of primes pp for which π(p)>li(p)\pi (p)>\operatorname {li}(p) relative to the prime numbers exists and is the same as the Rubinstein–Sarnak density. We also extend such results to a broad class of prime number races, including the “Mertens race” between ∏p>x(1−1/p)−1\prod _{p> x}(1-1/p)^{-1} and eγlogxe^{\gamma }\log x and the “Zhang race” between ∑p≥x1/(plogp)\sum _{p\ge x}1/(p\log p) and 1/logx1/\log x. These latter results resolve a question of the first and third authors from a previous paper, leading to further progress on a 1988 conjecture of Erdős on primitive sets. |
doi_str_mv | 10.1090/proc/14569 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_14569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26771622</jstor_id><sourcerecordid>26771622</sourcerecordid><originalsourceid>FETCH-LOGICAL-a319t-420602e7352960ed68aa9d0e5d0492c40eac635e9e50f71a9c939bbcb819dcdb3</originalsourceid><addsrcrecordid>eNp9j0FLw0AQhRdRMFYvnhVy8SKsndlsdjNHKdUWCnrQ87LZTKDFNGW3Hvz3JkY8epo3vI_He0JcIzwgEMwPsQ9z1KWhE5EhVJU0lTKnIgMAJYkKOhcXKe2GF0nbTNy8xm3HKd_u88Oo8v1nV3PMow-cLsVZ6z8SX_3emXh_Wr4tVnLz8rxePG6kL5COUiswoNgWpSID3JjKe2qAywY0qaCBfTBFycQltBY9haFHXYe6QmpCUxczcT_lhtinFLl1YxcfvxyCG3e5cZf72TXAtxO8S8c-_pHKWItGqcG_m3zfpf9yvgFjWVU7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Primes in prime number races</title><source>American Mathematical Society Publications</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lichtman, Jared Duker ; Martin, Greg ; Pomerance, Carl</creator><creatorcontrib>Lichtman, Jared Duker ; Martin, Greg ; Pomerance, Carl</creatorcontrib><description>Rubinstein and Sarnak have shown, conditional on the Riemann hypothesis (RH) and the linear independence hypothesis (LI) on the nonreal zeros of ζ(s)\zeta (s), that the set of real numbers x≥2x\ge 2 for which π(x)>li(x)\pi (x)>\operatorname {li}(x) has a logarithmic density, which they computed to be about 2.6×10−72.6\times 10^{-7}. A natural problem is to examine the actual primes in this race. We prove, assuming RH and LI, that the logarithmic density of the set of primes pp for which π(p)>li(p)\pi (p)>\operatorname {li}(p) relative to the prime numbers exists and is the same as the Rubinstein–Sarnak density. We also extend such results to a broad class of prime number races, including the “Mertens race” between ∏p>x(1−1/p)−1\prod _{p> x}(1-1/p)^{-1} and eγlogxe^{\gamma }\log x and the “Zhang race” between ∑p≥x1/(plogp)\sum _{p\ge x}1/(p\log p) and 1/logx1/\log x. These latter results resolve a question of the first and third authors from a previous paper, leading to further progress on a 1988 conjecture of Erdős on primitive sets.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/14569</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS ; Research article</subject><ispartof>Proceedings of the American Mathematical Society, 2019-09, Vol.147 (9), p.3743-3757</ispartof><rights>Copyright 2019 American Mathematical Society</rights><rights>2019 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a319t-420602e7352960ed68aa9d0e5d0492c40eac635e9e50f71a9c939bbcb819dcdb3</citedby><cites>FETCH-LOGICAL-a319t-420602e7352960ed68aa9d0e5d0492c40eac635e9e50f71a9c939bbcb819dcdb3</cites><orcidid>0000-0002-8476-9495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/proc/2019-147-09/S0002-9939-2019-14569-X/S0002-9939-2019-14569-X.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/proc/2019-147-09/S0002-9939-2019-14569-X/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,776,780,23307,27901,27902,77805,77815</link.rule.ids></links><search><creatorcontrib>Lichtman, Jared Duker</creatorcontrib><creatorcontrib>Martin, Greg</creatorcontrib><creatorcontrib>Pomerance, Carl</creatorcontrib><title>Primes in prime number races</title><title>Proceedings of the American Mathematical Society</title><addtitle>Proc. Amer. Math. Soc</addtitle><description>Rubinstein and Sarnak have shown, conditional on the Riemann hypothesis (RH) and the linear independence hypothesis (LI) on the nonreal zeros of ζ(s)\zeta (s), that the set of real numbers x≥2x\ge 2 for which π(x)>li(x)\pi (x)>\operatorname {li}(x) has a logarithmic density, which they computed to be about 2.6×10−72.6\times 10^{-7}. A natural problem is to examine the actual primes in this race. We prove, assuming RH and LI, that the logarithmic density of the set of primes pp for which π(p)>li(p)\pi (p)>\operatorname {li}(p) relative to the prime numbers exists and is the same as the Rubinstein–Sarnak density. We also extend such results to a broad class of prime number races, including the “Mertens race” between ∏p>x(1−1/p)−1\prod _{p> x}(1-1/p)^{-1} and eγlogxe^{\gamma }\log x and the “Zhang race” between ∑p≥x1/(plogp)\sum _{p\ge x}1/(p\log p) and 1/logx1/\log x. These latter results resolve a question of the first and third authors from a previous paper, leading to further progress on a 1988 conjecture of Erdős on primitive sets.</description><subject>A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS</subject><subject>Research article</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9j0FLw0AQhRdRMFYvnhVy8SKsndlsdjNHKdUWCnrQ87LZTKDFNGW3Hvz3JkY8epo3vI_He0JcIzwgEMwPsQ9z1KWhE5EhVJU0lTKnIgMAJYkKOhcXKe2GF0nbTNy8xm3HKd_u88Oo8v1nV3PMow-cLsVZ6z8SX_3emXh_Wr4tVnLz8rxePG6kL5COUiswoNgWpSID3JjKe2qAywY0qaCBfTBFycQltBY9haFHXYe6QmpCUxczcT_lhtinFLl1YxcfvxyCG3e5cZf72TXAtxO8S8c-_pHKWItGqcG_m3zfpf9yvgFjWVU7</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Lichtman, Jared Duker</creator><creator>Martin, Greg</creator><creator>Pomerance, Carl</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8476-9495</orcidid></search><sort><creationdate>20190901</creationdate><title>Primes in prime number races</title><author>Lichtman, Jared Duker ; Martin, Greg ; Pomerance, Carl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a319t-420602e7352960ed68aa9d0e5d0492c40eac635e9e50f71a9c939bbcb819dcdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS</topic><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lichtman, Jared Duker</creatorcontrib><creatorcontrib>Martin, Greg</creatorcontrib><creatorcontrib>Pomerance, Carl</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lichtman, Jared Duker</au><au>Martin, Greg</au><au>Pomerance, Carl</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Primes in prime number races</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><stitle>Proc. Amer. Math. Soc</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>147</volume><issue>9</issue><spage>3743</spage><epage>3757</epage><pages>3743-3757</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>Rubinstein and Sarnak have shown, conditional on the Riemann hypothesis (RH) and the linear independence hypothesis (LI) on the nonreal zeros of ζ(s)\zeta (s), that the set of real numbers x≥2x\ge 2 for which π(x)>li(x)\pi (x)>\operatorname {li}(x) has a logarithmic density, which they computed to be about 2.6×10−72.6\times 10^{-7}. A natural problem is to examine the actual primes in this race. We prove, assuming RH and LI, that the logarithmic density of the set of primes pp for which π(p)>li(p)\pi (p)>\operatorname {li}(p) relative to the prime numbers exists and is the same as the Rubinstein–Sarnak density. We also extend such results to a broad class of prime number races, including the “Mertens race” between ∏p>x(1−1/p)−1\prod _{p> x}(1-1/p)^{-1} and eγlogxe^{\gamma }\log x and the “Zhang race” between ∑p≥x1/(plogp)\sum _{p\ge x}1/(p\log p) and 1/logx1/\log x. These latter results resolve a question of the first and third authors from a previous paper, leading to further progress on a 1988 conjecture of Erdős on primitive sets.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/proc/14569</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8476-9495</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2019-09, Vol.147 (9), p.3743-3757 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_crossref_primary_10_1090_proc_14569 |
source | American Mathematical Society Publications; EZB-FREE-00999 freely available EZB journals |
subjects | A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS Research article |
title | Primes in prime number races |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T11%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Primes%20in%20prime%20number%20races&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Lichtman,%20Jared%20Duker&rft.date=2019-09-01&rft.volume=147&rft.issue=9&rft.spage=3743&rft.epage=3757&rft.pages=3743-3757&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/14569&rft_dat=%3Cjstor_cross%3E26771622%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26771622&rfr_iscdi=true |