Primes in prime number races

Rubinstein and Sarnak have shown, conditional on the Riemann hypothesis (RH) and the linear independence hypothesis (LI) on the nonreal zeros of ζ(s)\zeta (s), that the set of real numbers x≥2x\ge 2 for which π(x)>li⁡(x)\pi (x)>\operatorname {li}(x) has a logarithmic density, which they comput...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2019-09, Vol.147 (9), p.3743-3757
Hauptverfasser: Lichtman, Jared Duker, Martin, Greg, Pomerance, Carl
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3757
container_issue 9
container_start_page 3743
container_title Proceedings of the American Mathematical Society
container_volume 147
creator Lichtman, Jared Duker
Martin, Greg
Pomerance, Carl
description Rubinstein and Sarnak have shown, conditional on the Riemann hypothesis (RH) and the linear independence hypothesis (LI) on the nonreal zeros of ζ(s)\zeta (s), that the set of real numbers x≥2x\ge 2 for which π(x)>li⁡(x)\pi (x)>\operatorname {li}(x) has a logarithmic density, which they computed to be about 2.6×10−72.6\times 10^{-7}. A natural problem is to examine the actual primes in this race. We prove, assuming RH and LI, that the logarithmic density of the set of primes pp for which π(p)>li⁡(p)\pi (p)>\operatorname {li}(p) relative to the prime numbers exists and is the same as the Rubinstein–Sarnak density. We also extend such results to a broad class of prime number races, including the “Mertens race” between ∏p>x(1−1/p)−1\prod _{p> x}(1-1/p)^{-1} and eγlog⁡xe^{\gamma }\log x and the “Zhang race” between ∑p≥x1/(plog⁡p)\sum _{p\ge x}1/(p\log p) and 1/log⁡x1/\log x. These latter results resolve a question of the first and third authors from a previous paper, leading to further progress on a 1988 conjecture of Erdős on primitive sets.
doi_str_mv 10.1090/proc/14569
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_14569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26771622</jstor_id><sourcerecordid>26771622</sourcerecordid><originalsourceid>FETCH-LOGICAL-a319t-420602e7352960ed68aa9d0e5d0492c40eac635e9e50f71a9c939bbcb819dcdb3</originalsourceid><addsrcrecordid>eNp9j0FLw0AQhRdRMFYvnhVy8SKsndlsdjNHKdUWCnrQ87LZTKDFNGW3Hvz3JkY8epo3vI_He0JcIzwgEMwPsQ9z1KWhE5EhVJU0lTKnIgMAJYkKOhcXKe2GF0nbTNy8xm3HKd_u88Oo8v1nV3PMow-cLsVZ6z8SX_3emXh_Wr4tVnLz8rxePG6kL5COUiswoNgWpSID3JjKe2qAywY0qaCBfTBFycQltBY9haFHXYe6QmpCUxczcT_lhtinFLl1YxcfvxyCG3e5cZf72TXAtxO8S8c-_pHKWItGqcG_m3zfpf9yvgFjWVU7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Primes in prime number races</title><source>American Mathematical Society Publications</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lichtman, Jared Duker ; Martin, Greg ; Pomerance, Carl</creator><creatorcontrib>Lichtman, Jared Duker ; Martin, Greg ; Pomerance, Carl</creatorcontrib><description>Rubinstein and Sarnak have shown, conditional on the Riemann hypothesis (RH) and the linear independence hypothesis (LI) on the nonreal zeros of ζ(s)\zeta (s), that the set of real numbers x≥2x\ge 2 for which π(x)&gt;li⁡(x)\pi (x)&gt;\operatorname {li}(x) has a logarithmic density, which they computed to be about 2.6×10−72.6\times 10^{-7}. A natural problem is to examine the actual primes in this race. We prove, assuming RH and LI, that the logarithmic density of the set of primes pp for which π(p)&gt;li⁡(p)\pi (p)&gt;\operatorname {li}(p) relative to the prime numbers exists and is the same as the Rubinstein–Sarnak density. We also extend such results to a broad class of prime number races, including the “Mertens race” between ∏p&gt;x(1−1/p)−1\prod _{p&gt; x}(1-1/p)^{-1} and eγlog⁡xe^{\gamma }\log x and the “Zhang race” between ∑p≥x1/(plog⁡p)\sum _{p\ge x}1/(p\log p) and 1/log⁡x1/\log x. These latter results resolve a question of the first and third authors from a previous paper, leading to further progress on a 1988 conjecture of Erdős on primitive sets.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/14569</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS ; Research article</subject><ispartof>Proceedings of the American Mathematical Society, 2019-09, Vol.147 (9), p.3743-3757</ispartof><rights>Copyright 2019 American Mathematical Society</rights><rights>2019 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a319t-420602e7352960ed68aa9d0e5d0492c40eac635e9e50f71a9c939bbcb819dcdb3</citedby><cites>FETCH-LOGICAL-a319t-420602e7352960ed68aa9d0e5d0492c40eac635e9e50f71a9c939bbcb819dcdb3</cites><orcidid>0000-0002-8476-9495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/proc/2019-147-09/S0002-9939-2019-14569-X/S0002-9939-2019-14569-X.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/proc/2019-147-09/S0002-9939-2019-14569-X/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,776,780,23307,27901,27902,77805,77815</link.rule.ids></links><search><creatorcontrib>Lichtman, Jared Duker</creatorcontrib><creatorcontrib>Martin, Greg</creatorcontrib><creatorcontrib>Pomerance, Carl</creatorcontrib><title>Primes in prime number races</title><title>Proceedings of the American Mathematical Society</title><addtitle>Proc. Amer. Math. Soc</addtitle><description>Rubinstein and Sarnak have shown, conditional on the Riemann hypothesis (RH) and the linear independence hypothesis (LI) on the nonreal zeros of ζ(s)\zeta (s), that the set of real numbers x≥2x\ge 2 for which π(x)&gt;li⁡(x)\pi (x)&gt;\operatorname {li}(x) has a logarithmic density, which they computed to be about 2.6×10−72.6\times 10^{-7}. A natural problem is to examine the actual primes in this race. We prove, assuming RH and LI, that the logarithmic density of the set of primes pp for which π(p)&gt;li⁡(p)\pi (p)&gt;\operatorname {li}(p) relative to the prime numbers exists and is the same as the Rubinstein–Sarnak density. We also extend such results to a broad class of prime number races, including the “Mertens race” between ∏p&gt;x(1−1/p)−1\prod _{p&gt; x}(1-1/p)^{-1} and eγlog⁡xe^{\gamma }\log x and the “Zhang race” between ∑p≥x1/(plog⁡p)\sum _{p\ge x}1/(p\log p) and 1/log⁡x1/\log x. These latter results resolve a question of the first and third authors from a previous paper, leading to further progress on a 1988 conjecture of Erdős on primitive sets.</description><subject>A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS</subject><subject>Research article</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9j0FLw0AQhRdRMFYvnhVy8SKsndlsdjNHKdUWCnrQ87LZTKDFNGW3Hvz3JkY8epo3vI_He0JcIzwgEMwPsQ9z1KWhE5EhVJU0lTKnIgMAJYkKOhcXKe2GF0nbTNy8xm3HKd_u88Oo8v1nV3PMow-cLsVZ6z8SX_3emXh_Wr4tVnLz8rxePG6kL5COUiswoNgWpSID3JjKe2qAywY0qaCBfTBFycQltBY9haFHXYe6QmpCUxczcT_lhtinFLl1YxcfvxyCG3e5cZf72TXAtxO8S8c-_pHKWItGqcG_m3zfpf9yvgFjWVU7</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Lichtman, Jared Duker</creator><creator>Martin, Greg</creator><creator>Pomerance, Carl</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8476-9495</orcidid></search><sort><creationdate>20190901</creationdate><title>Primes in prime number races</title><author>Lichtman, Jared Duker ; Martin, Greg ; Pomerance, Carl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a319t-420602e7352960ed68aa9d0e5d0492c40eac635e9e50f71a9c939bbcb819dcdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS</topic><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lichtman, Jared Duker</creatorcontrib><creatorcontrib>Martin, Greg</creatorcontrib><creatorcontrib>Pomerance, Carl</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lichtman, Jared Duker</au><au>Martin, Greg</au><au>Pomerance, Carl</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Primes in prime number races</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><stitle>Proc. Amer. Math. Soc</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>147</volume><issue>9</issue><spage>3743</spage><epage>3757</epage><pages>3743-3757</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>Rubinstein and Sarnak have shown, conditional on the Riemann hypothesis (RH) and the linear independence hypothesis (LI) on the nonreal zeros of ζ(s)\zeta (s), that the set of real numbers x≥2x\ge 2 for which π(x)&gt;li⁡(x)\pi (x)&gt;\operatorname {li}(x) has a logarithmic density, which they computed to be about 2.6×10−72.6\times 10^{-7}. A natural problem is to examine the actual primes in this race. We prove, assuming RH and LI, that the logarithmic density of the set of primes pp for which π(p)&gt;li⁡(p)\pi (p)&gt;\operatorname {li}(p) relative to the prime numbers exists and is the same as the Rubinstein–Sarnak density. We also extend such results to a broad class of prime number races, including the “Mertens race” between ∏p&gt;x(1−1/p)−1\prod _{p&gt; x}(1-1/p)^{-1} and eγlog⁡xe^{\gamma }\log x and the “Zhang race” between ∑p≥x1/(plog⁡p)\sum _{p\ge x}1/(p\log p) and 1/log⁡x1/\log x. These latter results resolve a question of the first and third authors from a previous paper, leading to further progress on a 1988 conjecture of Erdős on primitive sets.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/proc/14569</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8476-9495</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2019-09, Vol.147 (9), p.3743-3757
issn 0002-9939
1088-6826
language eng
recordid cdi_crossref_primary_10_1090_proc_14569
source American Mathematical Society Publications; EZB-FREE-00999 freely available EZB journals
subjects A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS
Research article
title Primes in prime number races
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T11%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Primes%20in%20prime%20number%20races&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Lichtman,%20Jared%20Duker&rft.date=2019-09-01&rft.volume=147&rft.issue=9&rft.spage=3743&rft.epage=3757&rft.pages=3743-3757&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/14569&rft_dat=%3Cjstor_cross%3E26771622%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26771622&rfr_iscdi=true