Homogeneous universal H-fields
We consider derivations \partial on Conway's field \mathbf {No} of surreal numbers such that the ordered differential field (\mathbf {No},\partial ) has constant field \mathbb{R} and is a model of the model companion of the theory of H-fields with small derivation. We show that this determines...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2019-05, Vol.147 (5), p.2231-2234 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2234 |
---|---|
container_issue | 5 |
container_start_page | 2231 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 147 |
creator | van den Dries, Lou Ehrlich, Philip |
description | We consider derivations \partial on Conway's field \mathbf {No} of surreal numbers such that the ordered differential field (\mathbf {No},\partial ) has constant field \mathbb{R} and is a model of the model companion of the theory of H-fields with small derivation. We show that this determines (\mathbf {No},\partial ) uniquely up to isomorphism and that this structure is absolutely homogeneous universal for models of this theory with constant field \mathbb{R}. |
doi_str_mv | 10.1090/proc/14424 |
format | Article |
fullrecord | <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_14424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_proc_14424</sourcerecordid><originalsourceid>FETCH-LOGICAL-a256t-e527fdd7ba84f30b6481384f894bd64c2133f88ff12c0c9ffde8c7f7178eee333</originalsourceid><addsrcrecordid>eNp9j81KAzEYRYMoOFY3PoB040aIzV_zs5RiHaHgRtchk3yfjMw0JbGCb-_UunZ174XDhUPINWf3nDm22JUcF1wpoU5Iw5m1VFuhT0nDGBPUOenOyUWtH9PkTpmG3LR5zO-whbyv8_22_4JSwzBvKfYwpHpJzjAMFa7-ckbe1o-vq5ZuXp6eVw8bGsRSf1JYCoMpmS5YhZJ1Wlkup2qd6pJWUXAp0VpELiKLDjGBjQYNNxYApJQzcnf8jSXXWgD9rvRjKN-eM38w8wcz_2s2wbdHOIz1P-4Hi7lM_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Homogeneous universal H-fields</title><source>American Mathematical Society Publications</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>van den Dries, Lou ; Ehrlich, Philip</creator><creatorcontrib>van den Dries, Lou ; Ehrlich, Philip</creatorcontrib><description>We consider derivations \partial on Conway's field \mathbf {No} of surreal numbers such that the ordered differential field (\mathbf {No},\partial ) has constant field \mathbb{R} and is a model of the model companion of the theory of H-fields with small derivation. We show that this determines (\mathbf {No},\partial ) uniquely up to isomorphism and that this structure is absolutely homogeneous universal for models of this theory with constant field \mathbb{R}.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/14424</identifier><language>eng</language><ispartof>Proceedings of the American Mathematical Society, 2019-05, Vol.147 (5), p.2231-2234</ispartof><rights>Copyright 2019, American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/proc/2019-147-05/S0002-9939-2019-14424-5/S0002-9939-2019-14424-5.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/proc/2019-147-05/S0002-9939-2019-14424-5/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23328,27924,27925,77836,77846</link.rule.ids></links><search><creatorcontrib>van den Dries, Lou</creatorcontrib><creatorcontrib>Ehrlich, Philip</creatorcontrib><title>Homogeneous universal H-fields</title><title>Proceedings of the American Mathematical Society</title><description>We consider derivations \partial on Conway's field \mathbf {No} of surreal numbers such that the ordered differential field (\mathbf {No},\partial ) has constant field \mathbb{R} and is a model of the model companion of the theory of H-fields with small derivation. We show that this determines (\mathbf {No},\partial ) uniquely up to isomorphism and that this structure is absolutely homogeneous universal for models of this theory with constant field \mathbb{R}.</description><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9j81KAzEYRYMoOFY3PoB040aIzV_zs5RiHaHgRtchk3yfjMw0JbGCb-_UunZ174XDhUPINWf3nDm22JUcF1wpoU5Iw5m1VFuhT0nDGBPUOenOyUWtH9PkTpmG3LR5zO-whbyv8_22_4JSwzBvKfYwpHpJzjAMFa7-ckbe1o-vq5ZuXp6eVw8bGsRSf1JYCoMpmS5YhZJ1Wlkup2qd6pJWUXAp0VpELiKLDjGBjQYNNxYApJQzcnf8jSXXWgD9rvRjKN-eM38w8wcz_2s2wbdHOIz1P-4Hi7lM_w</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>van den Dries, Lou</creator><creator>Ehrlich, Philip</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190501</creationdate><title>Homogeneous universal H-fields</title><author>van den Dries, Lou ; Ehrlich, Philip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a256t-e527fdd7ba84f30b6481384f894bd64c2133f88ff12c0c9ffde8c7f7178eee333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van den Dries, Lou</creatorcontrib><creatorcontrib>Ehrlich, Philip</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van den Dries, Lou</au><au>Ehrlich, Philip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homogeneous universal H-fields</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>147</volume><issue>5</issue><spage>2231</spage><epage>2234</epage><pages>2231-2234</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>We consider derivations \partial on Conway's field \mathbf {No} of surreal numbers such that the ordered differential field (\mathbf {No},\partial ) has constant field \mathbb{R} and is a model of the model companion of the theory of H-fields with small derivation. We show that this determines (\mathbf {No},\partial ) uniquely up to isomorphism and that this structure is absolutely homogeneous universal for models of this theory with constant field \mathbb{R}.</abstract><doi>10.1090/proc/14424</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2019-05, Vol.147 (5), p.2231-2234 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_crossref_primary_10_1090_proc_14424 |
source | American Mathematical Society Publications; EZB-FREE-00999 freely available EZB journals |
title | Homogeneous universal H-fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A01%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homogeneous%20universal%20H-fields&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=van%20den%20Dries,%20Lou&rft.date=2019-05-01&rft.volume=147&rft.issue=5&rft.spage=2231&rft.epage=2234&rft.pages=2231-2234&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/14424&rft_dat=%3Cams_cross%3E10_1090_proc_14424%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |