Stochastic fixed points and nonlinear Perron--Frobenius theorem
We provide conditions for the existence of measurable solutions to the equation \xi (T\omega )=f(\omega ,\xi (\omega )), where T:\Omega \rightarrow \Omega is an automorphism of the probability space \Omega and f(\omega ,\cdot ) is a strictly nonexpansive mapping. We use results of this kind to estab...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2018-10, Vol.146 (10), p.4315-4330 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4330 |
---|---|
container_issue | 10 |
container_start_page | 4315 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 146 |
creator | BABAEI, E. EVSTIGNEEV, I. V. PIROGOV, S. A. |
description | We provide conditions for the existence of measurable solutions to the equation \xi (T\omega )=f(\omega ,\xi (\omega )), where T:\Omega \rightarrow \Omega is an automorphism of the probability space \Omega and f(\omega ,\cdot ) is a strictly nonexpansive mapping. We use results of this kind to establish a stochastic nonlinear analogue of the Perron-Frobenius theorem on eigenvalues and eigenvectors of a positive matrix. We consider a random mapping D(\omega ) of a random closed cone K(\omega ) in a finite-dimensional linear space into the cone K(T\omega ). Under the assumptions of monotonicity and homogeneity of D(\omega ), we prove the existence of scalar and vector measurable functions \alpha (\omega )>0 and x(\omega )\in K(\omega ) satisfying the equation \alpha (\omega )x(T\omega )=D(\omega )x(\omega ) almost surely. |
doi_str_mv | 10.1090/proc/14075 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_14075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90024137</jstor_id><sourcerecordid>90024137</sourcerecordid><originalsourceid>FETCH-LOGICAL-a319t-205b719e3723a6b2b7d5ac627b0dd14f8863f1fc415d42f790ff944ea8de90873</originalsourceid><addsrcrecordid>eNp9kE1LxDAQQIMoWFcv3oVevAhxJx9tkpPIsqvCgoJ6LmmTsF22SUkq6L-3teLR0zDM48EbhC4J3BJQsOxjaJaEgyiOUEZASlxKWh6jDAAoVoqpU3SW0n5cieIiQ3evQ2h2Og1tk7v205q8D60fUq69yX3wh9ZbHfMXG2PwGG9iqK1vP1I-7GyItjtHJ04fkr34nQv0vlm_rR7x9vnhaXW_xZoRNWAKRS2IskxQpsua1sIUuimpqMEYwp2UJXPENZwUhlMnFDinOLdaGqtACrZAN7O3iSGlaF3Vx7bT8asiUE3p1ZRe_aSP8NUM79MQ4h-pxh9wwibZ9XzXXfrP8w3s-mJe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stochastic fixed points and nonlinear Perron--Frobenius theorem</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>American Mathematical Society Publications</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>BABAEI, E. ; EVSTIGNEEV, I. V. ; PIROGOV, S. A.</creator><creatorcontrib>BABAEI, E. ; EVSTIGNEEV, I. V. ; PIROGOV, S. A.</creatorcontrib><description>We provide conditions for the existence of measurable solutions to the equation \xi (T\omega )=f(\omega ,\xi (\omega )), where T:\Omega \rightarrow \Omega is an automorphism of the probability space \Omega and f(\omega ,\cdot ) is a strictly nonexpansive mapping. We use results of this kind to establish a stochastic nonlinear analogue of the Perron-Frobenius theorem on eigenvalues and eigenvectors of a positive matrix. We consider a random mapping D(\omega ) of a random closed cone K(\omega ) in a finite-dimensional linear space into the cone K(T\omega ). Under the assumptions of monotonicity and homogeneity of D(\omega ), we prove the existence of scalar and vector measurable functions \alpha (\omega )>0 and x(\omega )\in K(\omega ) satisfying the equation \alpha (\omega )x(T\omega )=D(\omega )x(\omega ) almost surely.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/14075</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>B. ANALYSIS</subject><ispartof>Proceedings of the American Mathematical Society, 2018-10, Vol.146 (10), p.4315-4330</ispartof><rights>Copyright 2018, American Mathematical Society</rights><rights>2018 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a319t-205b719e3723a6b2b7d5ac627b0dd14f8863f1fc415d42f790ff944ea8de90873</citedby><cites>FETCH-LOGICAL-a319t-205b719e3723a6b2b7d5ac627b0dd14f8863f1fc415d42f790ff944ea8de90873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/proc/2018-146-10/S0002-9939-2018-14075-7/S0002-9939-2018-14075-7.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/proc/2018-146-10/S0002-9939-2018-14075-7/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,780,784,803,832,23324,23328,27924,27925,58017,58021,58250,58254,77836,77838,77846,77848</link.rule.ids></links><search><creatorcontrib>BABAEI, E.</creatorcontrib><creatorcontrib>EVSTIGNEEV, I. V.</creatorcontrib><creatorcontrib>PIROGOV, S. A.</creatorcontrib><title>Stochastic fixed points and nonlinear Perron--Frobenius theorem</title><title>Proceedings of the American Mathematical Society</title><description>We provide conditions for the existence of measurable solutions to the equation \xi (T\omega )=f(\omega ,\xi (\omega )), where T:\Omega \rightarrow \Omega is an automorphism of the probability space \Omega and f(\omega ,\cdot ) is a strictly nonexpansive mapping. We use results of this kind to establish a stochastic nonlinear analogue of the Perron-Frobenius theorem on eigenvalues and eigenvectors of a positive matrix. We consider a random mapping D(\omega ) of a random closed cone K(\omega ) in a finite-dimensional linear space into the cone K(T\omega ). Under the assumptions of monotonicity and homogeneity of D(\omega ), we prove the existence of scalar and vector measurable functions \alpha (\omega )>0 and x(\omega )\in K(\omega ) satisfying the equation \alpha (\omega )x(T\omega )=D(\omega )x(\omega ) almost surely.</description><subject>B. ANALYSIS</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQQIMoWFcv3oVevAhxJx9tkpPIsqvCgoJ6LmmTsF22SUkq6L-3teLR0zDM48EbhC4J3BJQsOxjaJaEgyiOUEZASlxKWh6jDAAoVoqpU3SW0n5cieIiQ3evQ2h2Og1tk7v205q8D60fUq69yX3wh9ZbHfMXG2PwGG9iqK1vP1I-7GyItjtHJ04fkr34nQv0vlm_rR7x9vnhaXW_xZoRNWAKRS2IskxQpsua1sIUuimpqMEYwp2UJXPENZwUhlMnFDinOLdaGqtACrZAN7O3iSGlaF3Vx7bT8asiUE3p1ZRe_aSP8NUM79MQ4h-pxh9wwibZ9XzXXfrP8w3s-mJe</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>BABAEI, E.</creator><creator>EVSTIGNEEV, I. V.</creator><creator>PIROGOV, S. A.</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181001</creationdate><title>Stochastic fixed points and nonlinear Perron--Frobenius theorem</title><author>BABAEI, E. ; EVSTIGNEEV, I. V. ; PIROGOV, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a319t-205b719e3723a6b2b7d5ac627b0dd14f8863f1fc415d42f790ff944ea8de90873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>B. ANALYSIS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BABAEI, E.</creatorcontrib><creatorcontrib>EVSTIGNEEV, I. V.</creatorcontrib><creatorcontrib>PIROGOV, S. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BABAEI, E.</au><au>EVSTIGNEEV, I. V.</au><au>PIROGOV, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic fixed points and nonlinear Perron--Frobenius theorem</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>146</volume><issue>10</issue><spage>4315</spage><epage>4330</epage><pages>4315-4330</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>We provide conditions for the existence of measurable solutions to the equation \xi (T\omega )=f(\omega ,\xi (\omega )), where T:\Omega \rightarrow \Omega is an automorphism of the probability space \Omega and f(\omega ,\cdot ) is a strictly nonexpansive mapping. We use results of this kind to establish a stochastic nonlinear analogue of the Perron-Frobenius theorem on eigenvalues and eigenvectors of a positive matrix. We consider a random mapping D(\omega ) of a random closed cone K(\omega ) in a finite-dimensional linear space into the cone K(T\omega ). Under the assumptions of monotonicity and homogeneity of D(\omega ), we prove the existence of scalar and vector measurable functions \alpha (\omega )>0 and x(\omega )\in K(\omega ) satisfying the equation \alpha (\omega )x(T\omega )=D(\omega )x(\omega ) almost surely.</abstract><pub>American Mathematical Society</pub><doi>10.1090/proc/14075</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2018-10, Vol.146 (10), p.4315-4330 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_crossref_primary_10_1090_proc_14075 |
source | American Mathematical Society Publications (Freely Accessible); JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; American Mathematical Society Publications; EZB-FREE-00999 freely available EZB journals |
subjects | B. ANALYSIS |
title | Stochastic fixed points and nonlinear Perron--Frobenius theorem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A26%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20fixed%20points%20and%20nonlinear%20Perron--Frobenius%20theorem&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=BABAEI,%20E.&rft.date=2018-10-01&rft.volume=146&rft.issue=10&rft.spage=4315&rft.epage=4330&rft.pages=4315-4330&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/14075&rft_dat=%3Cjstor_cross%3E90024137%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=90024137&rfr_iscdi=true |