Spectra for cubes in products of finite cyclic groups

We consider ``cubes'' in products of finite cyclic groups and we study their tiling and spectral properties. (A set in a finite group is called a tile if some of its translates form a partition of the group and is called spectral if it admits an orthogonal basis of characters for the funct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2018-06, Vol.146 (6), p.2417-2423
Hauptverfasser: AGORA, ELONA, GREPSTAD, SIGRID, KOLOUNTZAKIS, MIHAIL N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2423
container_issue 6
container_start_page 2417
container_title Proceedings of the American Mathematical Society
container_volume 146
creator AGORA, ELONA
GREPSTAD, SIGRID
KOLOUNTZAKIS, MIHAIL N.
description We consider ``cubes'' in products of finite cyclic groups and we study their tiling and spectral properties. (A set in a finite group is called a tile if some of its translates form a partition of the group and is called spectral if it admits an orthogonal basis of characters for the functions supported on the set.) We show an analogue of a theorem due to Iosevich and Pedersen (1998), Lagarias, Reeds and Wang (2000), and the third author of this paper (2000), which identified the tiling complements of the unit cube in \mathbb{R}^d with the spectra of the same cube.
doi_str_mv 10.1090/proc/14017
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_14017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90020427</jstor_id><sourcerecordid>90020427</sourcerecordid><originalsourceid>FETCH-LOGICAL-a278t-fed28094eeb447e75f290c97297a7d30ee4c6b090d47aca3d773c41a6453c82d3</originalsourceid><addsrcrecordid>eNp9j0tLxDAUhYMoWEc37oVs3Ah1bh5tkqUMvmDAhbou6U0iHWYmJWkX8-_tWHHp6nI4H4f7EXLN4J6BgWWfIi6ZBKZOSMFA67LWvD4lBQDw0hhhzslFzpspMiNVQar33uOQLA0xURxbn2m3p9OMG3HINAYaun03eIoH3HZIv1Ic-3xJzoLdZn_1exfk8-nxY_VSrt-eX1cP69JypYcyeMc1GOl9K6XyqgrcABrFjbLKCfBeYt1OfzupLFrhlBIoma1lJVBzJxbkbt7FFHNOPjR96nY2HRoGzVG4OQo3P8ITfDPDmzzE9EeayRwkP_a3c293-b-dbzCjXm4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spectra for cubes in products of finite cyclic groups</title><source>JSTOR Mathematics and Statistics</source><source>American Mathematical Society</source><source>Free E-Journal (出版社公開部分のみ)</source><source>JSTOR</source><creator>AGORA, ELONA ; GREPSTAD, SIGRID ; KOLOUNTZAKIS, MIHAIL N.</creator><creatorcontrib>AGORA, ELONA ; GREPSTAD, SIGRID ; KOLOUNTZAKIS, MIHAIL N.</creatorcontrib><description>We consider ``cubes'' in products of finite cyclic groups and we study their tiling and spectral properties. (A set in a finite group is called a tile if some of its translates form a partition of the group and is called spectral if it admits an orthogonal basis of characters for the functions supported on the set.) We show an analogue of a theorem due to Iosevich and Pedersen (1998), Lagarias, Reeds and Wang (2000), and the third author of this paper (2000), which identified the tiling complements of the unit cube in \mathbb{R}^d with the spectra of the same cube.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/14017</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>B. ANALYSIS</subject><ispartof>Proceedings of the American Mathematical Society, 2018-06, Vol.146 (6), p.2417-2423</ispartof><rights>Copyright 2018, American Mathematical Society</rights><rights>2018 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/proc/2018-146-06/S0002-9939-2018-14017-4/S0002-9939-2018-14017-4.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/proc/2018-146-06/S0002-9939-2018-14017-4/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,780,784,803,832,23324,23328,27924,27925,58017,58021,58250,58254,77836,77838,77846,77848</link.rule.ids></links><search><creatorcontrib>AGORA, ELONA</creatorcontrib><creatorcontrib>GREPSTAD, SIGRID</creatorcontrib><creatorcontrib>KOLOUNTZAKIS, MIHAIL N.</creatorcontrib><title>Spectra for cubes in products of finite cyclic groups</title><title>Proceedings of the American Mathematical Society</title><description>We consider ``cubes'' in products of finite cyclic groups and we study their tiling and spectral properties. (A set in a finite group is called a tile if some of its translates form a partition of the group and is called spectral if it admits an orthogonal basis of characters for the functions supported on the set.) We show an analogue of a theorem due to Iosevich and Pedersen (1998), Lagarias, Reeds and Wang (2000), and the third author of this paper (2000), which identified the tiling complements of the unit cube in \mathbb{R}^d with the spectra of the same cube.</description><subject>B. ANALYSIS</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9j0tLxDAUhYMoWEc37oVs3Ah1bh5tkqUMvmDAhbou6U0iHWYmJWkX8-_tWHHp6nI4H4f7EXLN4J6BgWWfIi6ZBKZOSMFA67LWvD4lBQDw0hhhzslFzpspMiNVQar33uOQLA0xURxbn2m3p9OMG3HINAYaun03eIoH3HZIv1Ic-3xJzoLdZn_1exfk8-nxY_VSrt-eX1cP69JypYcyeMc1GOl9K6XyqgrcABrFjbLKCfBeYt1OfzupLFrhlBIoma1lJVBzJxbkbt7FFHNOPjR96nY2HRoGzVG4OQo3P8ITfDPDmzzE9EeayRwkP_a3c293-b-dbzCjXm4</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>AGORA, ELONA</creator><creator>GREPSTAD, SIGRID</creator><creator>KOLOUNTZAKIS, MIHAIL N.</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180601</creationdate><title>Spectra for cubes in products of finite cyclic groups</title><author>AGORA, ELONA ; GREPSTAD, SIGRID ; KOLOUNTZAKIS, MIHAIL N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a278t-fed28094eeb447e75f290c97297a7d30ee4c6b090d47aca3d773c41a6453c82d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>B. ANALYSIS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>AGORA, ELONA</creatorcontrib><creatorcontrib>GREPSTAD, SIGRID</creatorcontrib><creatorcontrib>KOLOUNTZAKIS, MIHAIL N.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>AGORA, ELONA</au><au>GREPSTAD, SIGRID</au><au>KOLOUNTZAKIS, MIHAIL N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectra for cubes in products of finite cyclic groups</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2018-06-01</date><risdate>2018</risdate><volume>146</volume><issue>6</issue><spage>2417</spage><epage>2423</epage><pages>2417-2423</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>We consider ``cubes'' in products of finite cyclic groups and we study their tiling and spectral properties. (A set in a finite group is called a tile if some of its translates form a partition of the group and is called spectral if it admits an orthogonal basis of characters for the functions supported on the set.) We show an analogue of a theorem due to Iosevich and Pedersen (1998), Lagarias, Reeds and Wang (2000), and the third author of this paper (2000), which identified the tiling complements of the unit cube in \mathbb{R}^d with the spectra of the same cube.</abstract><pub>American Mathematical Society</pub><doi>10.1090/proc/14017</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2018-06, Vol.146 (6), p.2417-2423
issn 0002-9939
1088-6826
language eng
recordid cdi_crossref_primary_10_1090_proc_14017
source JSTOR Mathematics and Statistics; American Mathematical Society; Free E-Journal (出版社公開部分のみ); JSTOR
subjects B. ANALYSIS
title Spectra for cubes in products of finite cyclic groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A50%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectra%20for%20cubes%20in%20products%20of%20finite%20cyclic%20groups&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=AGORA,%20ELONA&rft.date=2018-06-01&rft.volume=146&rft.issue=6&rft.spage=2417&rft.epage=2423&rft.pages=2417-2423&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/14017&rft_dat=%3Cjstor_cross%3E90020427%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=90020427&rfr_iscdi=true