On arithmetic lattices in the plane

We investigate similarity classes of arithmetic lattices in the plane. We introduce a natural height function on the set of such similarity classes, and give asymptotic estimates on the number of all arithmetic similarity classes, semi-stable arithmetic similarity classes, and well-rounded arithmeti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2017-04, Vol.145 (4), p.1453-1465
Hauptverfasser: FUKSHANSKY, LENNY, GUERZHOY, PAVEL, LUCA, FLORIAN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1465
container_issue 4
container_start_page 1453
container_title Proceedings of the American Mathematical Society
container_volume 145
creator FUKSHANSKY, LENNY
GUERZHOY, PAVEL
LUCA, FLORIAN
description We investigate similarity classes of arithmetic lattices in the plane. We introduce a natural height function on the set of such similarity classes, and give asymptotic estimates on the number of all arithmetic similarity classes, semi-stable arithmetic similarity classes, and well-rounded arithmetic similarity classes of bounded height as the bound tends to infinity. We also briefly discuss some properties of the j-invariant corresponding to similarity classes of planar lattices.
doi_str_mv 10.1090/proc/13374
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_13374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90000667</jstor_id><sourcerecordid>90000667</sourcerecordid><originalsourceid>FETCH-LOGICAL-a319t-1af489832c591a93a4bfa8eb6b81de30391045b365f0d7434165004dedc88613</originalsourceid><addsrcrecordid>eNp9j0tLw0AUhQdRMFY37oWAuBFi781MJnOXUuoDCt10H26SCU3Ji5nZ-O9Njbh0dTicjwOfEPcILwgE68mN1RqlzNWFiBCMSbRJ9aWIACBNiCRdixvvT3NFUnkkHvdDzK4Nx96Gtoo7DnNYH7dDHI42njoe7K24arjz9u43V-Lwtj1sPpLd_v1z87pLWCKFBLlRhoxMq4yQSbIqGza21KXB2kqQhKCyUuqsgTpXUqHOAFRt68oYjXIlnpfbyo3eO9sUk2t7dl8FQnG2K852xY_dDD8s8MmH0f2RNIuB1vm8Py079_6_n2-F6VaM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On arithmetic lattices in the plane</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><creator>FUKSHANSKY, LENNY ; GUERZHOY, PAVEL ; LUCA, FLORIAN</creator><creatorcontrib>FUKSHANSKY, LENNY ; GUERZHOY, PAVEL ; LUCA, FLORIAN</creatorcontrib><description>We investigate similarity classes of arithmetic lattices in the plane. We introduce a natural height function on the set of such similarity classes, and give asymptotic estimates on the number of all arithmetic similarity classes, semi-stable arithmetic similarity classes, and well-rounded arithmetic similarity classes of bounded height as the bound tends to infinity. We also briefly discuss some properties of the j-invariant corresponding to similarity classes of planar lattices.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/13374</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS</subject><ispartof>Proceedings of the American Mathematical Society, 2017-04, Vol.145 (4), p.1453-1465</ispartof><rights>Copyright 2016, American Mathematical Society</rights><rights>2016 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a319t-1af489832c591a93a4bfa8eb6b81de30391045b365f0d7434165004dedc88613</citedby><cites>FETCH-LOGICAL-a319t-1af489832c591a93a4bfa8eb6b81de30391045b365f0d7434165004dedc88613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/proc/2017-145-04/S0002-9939-2016-13374-1/S0002-9939-2016-13374-1.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/proc/2017-145-04/S0002-9939-2016-13374-1/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,777,781,800,829,23305,23309,27905,27906,57998,58002,58231,58235,77585,77587,77595,77597</link.rule.ids></links><search><creatorcontrib>FUKSHANSKY, LENNY</creatorcontrib><creatorcontrib>GUERZHOY, PAVEL</creatorcontrib><creatorcontrib>LUCA, FLORIAN</creatorcontrib><title>On arithmetic lattices in the plane</title><title>Proceedings of the American Mathematical Society</title><description>We investigate similarity classes of arithmetic lattices in the plane. We introduce a natural height function on the set of such similarity classes, and give asymptotic estimates on the number of all arithmetic similarity classes, semi-stable arithmetic similarity classes, and well-rounded arithmetic similarity classes of bounded height as the bound tends to infinity. We also briefly discuss some properties of the j-invariant corresponding to similarity classes of planar lattices.</description><subject>A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9j0tLw0AUhQdRMFY37oWAuBFi781MJnOXUuoDCt10H26SCU3Ji5nZ-O9Njbh0dTicjwOfEPcILwgE68mN1RqlzNWFiBCMSbRJ9aWIACBNiCRdixvvT3NFUnkkHvdDzK4Nx96Gtoo7DnNYH7dDHI42njoe7K24arjz9u43V-Lwtj1sPpLd_v1z87pLWCKFBLlRhoxMq4yQSbIqGza21KXB2kqQhKCyUuqsgTpXUqHOAFRt68oYjXIlnpfbyo3eO9sUk2t7dl8FQnG2K852xY_dDD8s8MmH0f2RNIuB1vm8Py079_6_n2-F6VaM</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>FUKSHANSKY, LENNY</creator><creator>GUERZHOY, PAVEL</creator><creator>LUCA, FLORIAN</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170401</creationdate><title>On arithmetic lattices in the plane</title><author>FUKSHANSKY, LENNY ; GUERZHOY, PAVEL ; LUCA, FLORIAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a319t-1af489832c591a93a4bfa8eb6b81de30391045b365f0d7434165004dedc88613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FUKSHANSKY, LENNY</creatorcontrib><creatorcontrib>GUERZHOY, PAVEL</creatorcontrib><creatorcontrib>LUCA, FLORIAN</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FUKSHANSKY, LENNY</au><au>GUERZHOY, PAVEL</au><au>LUCA, FLORIAN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On arithmetic lattices in the plane</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>145</volume><issue>4</issue><spage>1453</spage><epage>1465</epage><pages>1453-1465</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>We investigate similarity classes of arithmetic lattices in the plane. We introduce a natural height function on the set of such similarity classes, and give asymptotic estimates on the number of all arithmetic similarity classes, semi-stable arithmetic similarity classes, and well-rounded arithmetic similarity classes of bounded height as the bound tends to infinity. We also briefly discuss some properties of the j-invariant corresponding to similarity classes of planar lattices.</abstract><pub>American Mathematical Society</pub><doi>10.1090/proc/13374</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2017-04, Vol.145 (4), p.1453-1465
issn 0002-9939
1088-6826
language eng
recordid cdi_crossref_primary_10_1090_proc_13374
source American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; Jstor Complete Legacy; American Mathematical Society Publications
subjects A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS
title On arithmetic lattices in the plane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20arithmetic%20lattices%20in%20the%20plane&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=FUKSHANSKY,%20LENNY&rft.date=2017-04-01&rft.volume=145&rft.issue=4&rft.spage=1453&rft.epage=1465&rft.pages=1453-1465&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/13374&rft_dat=%3Cjstor_cross%3E90000667%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=90000667&rfr_iscdi=true