On non-normal solutions of linear differential equations
Normality arguments are applied to study the oscillation of solutions of f''+Af=0, where the coefficient A is analytic in the unit disc \mathbb{D} and \sup _{z\in \mathbb{D}} (1-\vert z\vert^2)^2\vert A(z)\vert < \infty . It is shown that such a differential equation may admit a non-nor...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2017-03, Vol.145 (3), p.1209-1220 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1220 |
---|---|
container_issue | 3 |
container_start_page | 1209 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 145 |
creator | Janne Gröhn |
description | Normality arguments are applied to study the oscillation of solutions of f''+Af=0, where the coefficient A is analytic in the unit disc \mathbb{D} and \sup _{z\in \mathbb{D}} (1-\vert z\vert^2)^2\vert A(z)\vert < \infty . It is shown that such a differential equation may admit a non-normal solution having prescribed uniformly separated zeros. |
doi_str_mv | 10.1090/proc/13292 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_13292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>procamermathsoci.145.3.1209</jstor_id><sourcerecordid>procamermathsoci.145.3.1209</sourcerecordid><originalsourceid>FETCH-LOGICAL-a338t-1cad4f2b3f25dc37321dda519219ccb5e3dc4b14bdfad32280769b55506b4acc3</originalsourceid><addsrcrecordid>eNp9j0tLxDAYRYMoWEc3_oJu3Ahx8uXRNksZfMHAbHQd0jywQ5uMSWfhv7ediktXlwvnXjgI3QJ5ACLJ-pCiWQOjkp6hAkjT4Kqh1TkqCCEUS8nkJbrKeT9VkLwuULMLZYgBh5gG3Zc59sexiyGX0Zd9F5xOpe28d8mFsZsA93XUJ-AaXXjdZ3fzmyv08fz0vnnF293L2-ZxizVjzYjBaMs9bZmnwhpWMwrWagGSgjSmFY5Zw1vgrfXaMkobUleyFUKQquXaGLZC98uvSTHn5Lw6pG7Q6VsBUbOzmp3VyXmCyQLv8xjTHzkTenCT4fiZo-kUcKGYAkrkNLlbJnrI_13_AFotaJE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On non-normal solutions of linear differential equations</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Janne Gröhn</creator><creatorcontrib>Janne Gröhn</creatorcontrib><description>Normality arguments are applied to study the oscillation of solutions of f''+Af=0, where the coefficient A is analytic in the unit disc \mathbb{D} and \sup _{z\in \mathbb{D}} (1-\vert z\vert^2)^2\vert A(z)\vert < \infty . It is shown that such a differential equation may admit a non-normal solution having prescribed uniformly separated zeros.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/13292</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>B. ANALYSIS</subject><ispartof>Proceedings of the American Mathematical Society, 2017-03, Vol.145 (3), p.1209-1220</ispartof><rights>Copyright 2016, American Mathematical Society</rights><rights>2016 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a338t-1cad4f2b3f25dc37321dda519219ccb5e3dc4b14bdfad32280769b55506b4acc3</citedby><cites>FETCH-LOGICAL-a338t-1cad4f2b3f25dc37321dda519219ccb5e3dc4b14bdfad32280769b55506b4acc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/proc/2017-145-03/S0002-9939-2016-13292-9/S0002-9939-2016-13292-9.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/proc/2017-145-03/S0002-9939-2016-13292-9/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,778,782,801,830,23307,23311,27907,27908,58000,58004,58233,58237,77587,77589,77597,77599</link.rule.ids></links><search><creatorcontrib>Janne Gröhn</creatorcontrib><title>On non-normal solutions of linear differential equations</title><title>Proceedings of the American Mathematical Society</title><description>Normality arguments are applied to study the oscillation of solutions of f''+Af=0, where the coefficient A is analytic in the unit disc \mathbb{D} and \sup _{z\in \mathbb{D}} (1-\vert z\vert^2)^2\vert A(z)\vert < \infty . It is shown that such a differential equation may admit a non-normal solution having prescribed uniformly separated zeros.</description><subject>B. ANALYSIS</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9j0tLxDAYRYMoWEc3_oJu3Ahx8uXRNksZfMHAbHQd0jywQ5uMSWfhv7ediktXlwvnXjgI3QJ5ACLJ-pCiWQOjkp6hAkjT4Kqh1TkqCCEUS8nkJbrKeT9VkLwuULMLZYgBh5gG3Zc59sexiyGX0Zd9F5xOpe28d8mFsZsA93XUJ-AaXXjdZ3fzmyv08fz0vnnF293L2-ZxizVjzYjBaMs9bZmnwhpWMwrWagGSgjSmFY5Zw1vgrfXaMkobUleyFUKQquXaGLZC98uvSTHn5Lw6pG7Q6VsBUbOzmp3VyXmCyQLv8xjTHzkTenCT4fiZo-kUcKGYAkrkNLlbJnrI_13_AFotaJE</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Janne Gröhn</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170301</creationdate><title>On non-normal solutions of linear differential equations</title><author>Janne Gröhn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a338t-1cad4f2b3f25dc37321dda519219ccb5e3dc4b14bdfad32280769b55506b4acc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>B. ANALYSIS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janne Gröhn</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janne Gröhn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On non-normal solutions of linear differential equations</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2017-03-01</date><risdate>2017</risdate><volume>145</volume><issue>3</issue><spage>1209</spage><epage>1220</epage><pages>1209-1220</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>Normality arguments are applied to study the oscillation of solutions of f''+Af=0, where the coefficient A is analytic in the unit disc \mathbb{D} and \sup _{z\in \mathbb{D}} (1-\vert z\vert^2)^2\vert A(z)\vert < \infty . It is shown that such a differential equation may admit a non-normal solution having prescribed uniformly separated zeros.</abstract><pub>American Mathematical Society</pub><doi>10.1090/proc/13292</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2017-03, Vol.145 (3), p.1209-1220 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_crossref_primary_10_1090_proc_13292 |
source | American Mathematical Society Publications (Freely Accessible); JSTOR Mathematics & Statistics; Jstor Complete Legacy; American Mathematical Society Publications; EZB-FREE-00999 freely available EZB journals |
subjects | B. ANALYSIS |
title | On non-normal solutions of linear differential equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A28%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20non-normal%20solutions%20of%20linear%20differential%20equations&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Janne%20Gr%C3%B6hn&rft.date=2017-03-01&rft.volume=145&rft.issue=3&rft.spage=1209&rft.epage=1220&rft.pages=1209-1220&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/13292&rft_dat=%3Cjstor_cross%3Eprocamermathsoci.145.3.1209%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=procamermathsoci.145.3.1209&rfr_iscdi=true |