Algebraic properties of Kaneko-Zagier lifts of supersingular polynomials

studied lifts to \mathbf {Q}[x]. Among these is one introduced by Kaneko and Zagier, which, when interpreted as a specialized Jacobi polynomial, is seen to coincide with a lift discovered by Brillhart and Morton a few years later. The algebraic properties of this family of lifts of \mathfrak{S}_\ell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2017-06, Vol.145 (6), p.2291-2304
Hauptverfasser: CULLINAN, JOHN, HAJIR, FARSHID
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2304
container_issue 6
container_start_page 2291
container_title Proceedings of the American Mathematical Society
container_volume 145
creator CULLINAN, JOHN
HAJIR, FARSHID
description studied lifts to \mathbf {Q}[x]. Among these is one introduced by Kaneko and Zagier, which, when interpreted as a specialized Jacobi polynomial, is seen to coincide with a lift discovered by Brillhart and Morton a few years later. The algebraic properties of this family of lifts of \mathfrak{S}_\ell (x) are not well-understood. We focus on a conjecture of Mahlburg and Ono regarding the maximality of their Galois groups (when shorn of their trivial linear factors) and also establish their irreducibility in some previously unknown cases.]]>
doi_str_mv 10.1090/proc/13212
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_13212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90005835</jstor_id><sourcerecordid>90005835</sourcerecordid><originalsourceid>FETCH-LOGICAL-a278t-cfad309f982da8366c62ea3f0b02d75e23bb5bf3acc76489f5f8caf5e7fcf7fa3</originalsourceid><addsrcrecordid>eNp9kL1PwzAQxS0EEqWwsCNlYUEK9UeT2GNVAUVUYoGFJbo4vsgliSM7Hfrf4zaIkenp7v3uSfcIuWX0kVFFF4N3esEEZ_yMzBiVMs0lz8_JjFLKU6WEuiRXIeziyNSymJHNqm1M5cHqJN4Oxo_WhMRh8ga9-XbpFzTW-KS1OJ7WYR-ZYPtm34JPBtceetdZaMM1ucAo5uZX5-Tz-eljvUm37y-v69U2BV7IMdUItaAKleQ1SJHnOucGBNKK8rrIDBdVlVUoQOsiX0qFGUoNmJkCNRYIYk4eplztXQjeYDl424E_lIyWxw7KYwflqYMI303wLozO_5Eqvp9JkUX_fvKhC__l_ABlB2fE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Algebraic properties of Kaneko-Zagier lifts of supersingular polynomials</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>American Mathematical Society Publications</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>CULLINAN, JOHN ; HAJIR, FARSHID</creator><creatorcontrib>CULLINAN, JOHN ; HAJIR, FARSHID</creatorcontrib><description>studied lifts to \mathbf {Q}[x]. Among these is one introduced by Kaneko and Zagier, which, when interpreted as a specialized Jacobi polynomial, is seen to coincide with a lift discovered by Brillhart and Morton a few years later. The algebraic properties of this family of lifts of \mathfrak{S}_\ell (x) are not well-understood. We focus on a conjecture of Mahlburg and Ono regarding the maximality of their Galois groups (when shorn of their trivial linear factors) and also establish their irreducibility in some previously unknown cases.]]&gt;</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/13212</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS</subject><ispartof>Proceedings of the American Mathematical Society, 2017-06, Vol.145 (6), p.2291-2304</ispartof><rights>Copyright 2017, American Mathematical Society</rights><rights>2017 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/proc/2017-145-06/S0002-9939-2017-13212-2/S0002-9939-2017-13212-2.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/proc/2017-145-06/S0002-9939-2017-13212-2/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,780,784,803,832,23324,23328,27924,27925,58017,58021,58250,58254,77836,77838,77846,77848</link.rule.ids></links><search><creatorcontrib>CULLINAN, JOHN</creatorcontrib><creatorcontrib>HAJIR, FARSHID</creatorcontrib><title>Algebraic properties of Kaneko-Zagier lifts of supersingular polynomials</title><title>Proceedings of the American Mathematical Society</title><description>studied lifts to \mathbf {Q}[x]. Among these is one introduced by Kaneko and Zagier, which, when interpreted as a specialized Jacobi polynomial, is seen to coincide with a lift discovered by Brillhart and Morton a few years later. The algebraic properties of this family of lifts of \mathfrak{S}_\ell (x) are not well-understood. We focus on a conjecture of Mahlburg and Ono regarding the maximality of their Galois groups (when shorn of their trivial linear factors) and also establish their irreducibility in some previously unknown cases.]]&gt;</description><subject>A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kL1PwzAQxS0EEqWwsCNlYUEK9UeT2GNVAUVUYoGFJbo4vsgliSM7Hfrf4zaIkenp7v3uSfcIuWX0kVFFF4N3esEEZ_yMzBiVMs0lz8_JjFLKU6WEuiRXIeziyNSymJHNqm1M5cHqJN4Oxo_WhMRh8ga9-XbpFzTW-KS1OJ7WYR-ZYPtm34JPBtceetdZaMM1ucAo5uZX5-Tz-eljvUm37y-v69U2BV7IMdUItaAKleQ1SJHnOucGBNKK8rrIDBdVlVUoQOsiX0qFGUoNmJkCNRYIYk4eplztXQjeYDl424E_lIyWxw7KYwflqYMI303wLozO_5Eqvp9JkUX_fvKhC__l_ABlB2fE</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>CULLINAN, JOHN</creator><creator>HAJIR, FARSHID</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170601</creationdate><title>Algebraic properties of Kaneko-Zagier lifts of supersingular polynomials</title><author>CULLINAN, JOHN ; HAJIR, FARSHID</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a278t-cfad309f982da8366c62ea3f0b02d75e23bb5bf3acc76489f5f8caf5e7fcf7fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CULLINAN, JOHN</creatorcontrib><creatorcontrib>HAJIR, FARSHID</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CULLINAN, JOHN</au><au>HAJIR, FARSHID</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algebraic properties of Kaneko-Zagier lifts of supersingular polynomials</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2017-06-01</date><risdate>2017</risdate><volume>145</volume><issue>6</issue><spage>2291</spage><epage>2304</epage><pages>2291-2304</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>studied lifts to \mathbf {Q}[x]. Among these is one introduced by Kaneko and Zagier, which, when interpreted as a specialized Jacobi polynomial, is seen to coincide with a lift discovered by Brillhart and Morton a few years later. The algebraic properties of this family of lifts of \mathfrak{S}_\ell (x) are not well-understood. We focus on a conjecture of Mahlburg and Ono regarding the maximality of their Galois groups (when shorn of their trivial linear factors) and also establish their irreducibility in some previously unknown cases.]]&gt;</abstract><pub>American Mathematical Society</pub><doi>10.1090/proc/13212</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2017-06, Vol.145 (6), p.2291-2304
issn 0002-9939
1088-6826
language eng
recordid cdi_crossref_primary_10_1090_proc_13212
source American Mathematical Society Publications (Freely Accessible); JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; American Mathematical Society Publications; EZB-FREE-00999 freely available EZB journals
subjects A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS
title Algebraic properties of Kaneko-Zagier lifts of supersingular polynomials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algebraic%20properties%20of%20Kaneko-Zagier%20lifts%20of%20supersingular%20polynomials&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=CULLINAN,%20JOHN&rft.date=2017-06-01&rft.volume=145&rft.issue=6&rft.spage=2291&rft.epage=2304&rft.pages=2291-2304&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/13212&rft_dat=%3Cjstor_cross%3E90005835%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=90005835&rfr_iscdi=true