Four factorization formulas for plane partitions
All ten symmetry classes of plane partitions that fit in a given box are known to be enumerated by simple product formulas, but there is still no unified proof for all of them. Progress towards this goal can be made by establishing identities connecting the various symmetry classes. We present in th...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2016-05, Vol.144 (5), p.1841-1856 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1856 |
---|---|
container_issue | 5 |
container_start_page | 1841 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 144 |
creator | Ciucu, Mihai |
description | All ten symmetry classes of plane partitions that fit in a given box are known to be enumerated by simple product formulas, but there is still no unified proof for all of them. Progress towards this goal can be made by establishing identities connecting the various symmetry classes. We present in this paper four such identities, involving all ten symmetry classes. We discuss their proofs and generalizations. The main result of this paper is to give a generalization of one of them, in the style of the identity presented in ``A factorization theorem for rhombus tilings,'' M. Ciucu and C. Krattenthaler, arXiv:1403.3323. |
doi_str_mv | 10.1090/proc/12800 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_12800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>procamermathsoci.144.5.1841</jstor_id><sourcerecordid>procamermathsoci.144.5.1841</sourcerecordid><originalsourceid>FETCH-LOGICAL-a302t-44b11c11785feeabb10bcd1bf5ab0dcee3d008dcab99ff84cb0f4abfaa819473</originalsourceid><addsrcrecordid>eNp9j8FOwzAMhiMEEmVw4Ql64YJUZrfplhzRxAbSJC67R06aiE7tUiXdAZ6ehiKOnGzL32_5Y-we4QlBwnII3iyxFAAXLEMQoliJcnXJMgAoCykrec1uYjxOI0q-zhhs_TnkjszoQ_tFY-tPufOhP3cUU5MPHZ1sPlAY27SMt-zKURft3W9dsMP25bB5Lfbvu7fN876gCsqx4FwjGsS1qJ21pDWCNg1qV5OGxlhbNQCiMaSldE5wo8Fx0o5IpMeqBXucz5rgYwzWqSG0PYVPhaCSqkqq6kd1gmGGj3HS-CMTQb0NPY0f0ZtWIeeqVig4TpGHOUJ9_O_0NyIdZp8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Four factorization formulas for plane partitions</title><source>American Mathematical Society Publications - Open Access</source><source>American Mathematical Society Journals</source><source>JSTOR</source><source>EZB Electronic Journals Library</source><source>JSTOR Mathematics & Statistics Collection</source><creator>Ciucu, Mihai</creator><creatorcontrib>Ciucu, Mihai</creatorcontrib><description>All ten symmetry classes of plane partitions that fit in a given box are known to be enumerated by simple product formulas, but there is still no unified proof for all of them. Progress towards this goal can be made by establishing identities connecting the various symmetry classes. We present in this paper four such identities, involving all ten symmetry classes. We discuss their proofs and generalizations. The main result of this paper is to give a generalization of one of them, in the style of the identity presented in ``A factorization theorem for rhombus tilings,'' M. Ciucu and C. Krattenthaler, arXiv:1403.3323.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/12800</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS</subject><ispartof>Proceedings of the American Mathematical Society, 2016-05, Vol.144 (5), p.1841-1856</ispartof><rights>Copyright 2016, American Mathematical Society</rights><rights>2016 American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a302t-44b11c11785feeabb10bcd1bf5ab0dcee3d008dcab99ff84cb0f4abfaa819473</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/proc/2016-144-05/S0002-9939-2016-12800-1/S0002-9939-2016-12800-1.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/proc/2016-144-05/S0002-9939-2016-12800-1/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,780,784,803,832,23323,23327,27923,27924,58016,58020,58249,58253,77607,77609,77617,77619</link.rule.ids></links><search><creatorcontrib>Ciucu, Mihai</creatorcontrib><title>Four factorization formulas for plane partitions</title><title>Proceedings of the American Mathematical Society</title><description>All ten symmetry classes of plane partitions that fit in a given box are known to be enumerated by simple product formulas, but there is still no unified proof for all of them. Progress towards this goal can be made by establishing identities connecting the various symmetry classes. We present in this paper four such identities, involving all ten symmetry classes. We discuss their proofs and generalizations. The main result of this paper is to give a generalization of one of them, in the style of the identity presented in ``A factorization theorem for rhombus tilings,'' M. Ciucu and C. Krattenthaler, arXiv:1403.3323.</description><subject>A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9j8FOwzAMhiMEEmVw4Ql64YJUZrfplhzRxAbSJC67R06aiE7tUiXdAZ6ehiKOnGzL32_5Y-we4QlBwnII3iyxFAAXLEMQoliJcnXJMgAoCykrec1uYjxOI0q-zhhs_TnkjszoQ_tFY-tPufOhP3cUU5MPHZ1sPlAY27SMt-zKURft3W9dsMP25bB5Lfbvu7fN876gCsqx4FwjGsS1qJ21pDWCNg1qV5OGxlhbNQCiMaSldE5wo8Fx0o5IpMeqBXucz5rgYwzWqSG0PYVPhaCSqkqq6kd1gmGGj3HS-CMTQb0NPY0f0ZtWIeeqVig4TpGHOUJ9_O_0NyIdZp8</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Ciucu, Mihai</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160501</creationdate><title>Four factorization formulas for plane partitions</title><author>Ciucu, Mihai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a302t-44b11c11785feeabb10bcd1bf5ab0dcee3d008dcab99ff84cb0f4abfaa819473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ciucu, Mihai</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ciucu, Mihai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Four factorization formulas for plane partitions</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2016-05-01</date><risdate>2016</risdate><volume>144</volume><issue>5</issue><spage>1841</spage><epage>1856</epage><pages>1841-1856</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>All ten symmetry classes of plane partitions that fit in a given box are known to be enumerated by simple product formulas, but there is still no unified proof for all of them. Progress towards this goal can be made by establishing identities connecting the various symmetry classes. We present in this paper four such identities, involving all ten symmetry classes. We discuss their proofs and generalizations. The main result of this paper is to give a generalization of one of them, in the style of the identity presented in ``A factorization theorem for rhombus tilings,'' M. Ciucu and C. Krattenthaler, arXiv:1403.3323.</abstract><pub>American Mathematical Society</pub><doi>10.1090/proc/12800</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2016-05, Vol.144 (5), p.1841-1856 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_crossref_primary_10_1090_proc_12800 |
source | American Mathematical Society Publications - Open Access; American Mathematical Society Journals; JSTOR; EZB Electronic Journals Library; JSTOR Mathematics & Statistics Collection |
subjects | A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS |
title | Four factorization formulas for plane partitions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Four%20factorization%20formulas%20for%20plane%20partitions&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Ciucu,%20Mihai&rft.date=2016-05-01&rft.volume=144&rft.issue=5&rft.spage=1841&rft.epage=1856&rft.pages=1841-1856&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/12800&rft_dat=%3Cjstor_cross%3Eprocamermathsoci.144.5.1841%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=procamermathsoci.144.5.1841&rfr_iscdi=true |