Four factorization formulas for plane partitions

All ten symmetry classes of plane partitions that fit in a given box are known to be enumerated by simple product formulas, but there is still no unified proof for all of them. Progress towards this goal can be made by establishing identities connecting the various symmetry classes. We present in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2016-05, Vol.144 (5), p.1841-1856
1. Verfasser: Ciucu, Mihai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1856
container_issue 5
container_start_page 1841
container_title Proceedings of the American Mathematical Society
container_volume 144
creator Ciucu, Mihai
description All ten symmetry classes of plane partitions that fit in a given box are known to be enumerated by simple product formulas, but there is still no unified proof for all of them. Progress towards this goal can be made by establishing identities connecting the various symmetry classes. We present in this paper four such identities, involving all ten symmetry classes. We discuss their proofs and generalizations. The main result of this paper is to give a generalization of one of them, in the style of the identity presented in ``A factorization theorem for rhombus tilings,'' M. Ciucu and C. Krattenthaler, arXiv:1403.3323.
doi_str_mv 10.1090/proc/12800
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_12800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>procamermathsoci.144.5.1841</jstor_id><sourcerecordid>procamermathsoci.144.5.1841</sourcerecordid><originalsourceid>FETCH-LOGICAL-a302t-44b11c11785feeabb10bcd1bf5ab0dcee3d008dcab99ff84cb0f4abfaa819473</originalsourceid><addsrcrecordid>eNp9j8FOwzAMhiMEEmVw4Ql64YJUZrfplhzRxAbSJC67R06aiE7tUiXdAZ6ehiKOnGzL32_5Y-we4QlBwnII3iyxFAAXLEMQoliJcnXJMgAoCykrec1uYjxOI0q-zhhs_TnkjszoQ_tFY-tPufOhP3cUU5MPHZ1sPlAY27SMt-zKURft3W9dsMP25bB5Lfbvu7fN876gCsqx4FwjGsS1qJ21pDWCNg1qV5OGxlhbNQCiMaSldE5wo8Fx0o5IpMeqBXucz5rgYwzWqSG0PYVPhaCSqkqq6kd1gmGGj3HS-CMTQb0NPY0f0ZtWIeeqVig4TpGHOUJ9_O_0NyIdZp8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Four factorization formulas for plane partitions</title><source>American Mathematical Society Publications - Open Access</source><source>American Mathematical Society Journals</source><source>JSTOR</source><source>EZB Electronic Journals Library</source><source>JSTOR Mathematics &amp; Statistics Collection</source><creator>Ciucu, Mihai</creator><creatorcontrib>Ciucu, Mihai</creatorcontrib><description>All ten symmetry classes of plane partitions that fit in a given box are known to be enumerated by simple product formulas, but there is still no unified proof for all of them. Progress towards this goal can be made by establishing identities connecting the various symmetry classes. We present in this paper four such identities, involving all ten symmetry classes. We discuss their proofs and generalizations. The main result of this paper is to give a generalization of one of them, in the style of the identity presented in ``A factorization theorem for rhombus tilings,'' M. Ciucu and C. Krattenthaler, arXiv:1403.3323.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/12800</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS</subject><ispartof>Proceedings of the American Mathematical Society, 2016-05, Vol.144 (5), p.1841-1856</ispartof><rights>Copyright 2016, American Mathematical Society</rights><rights>2016 American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a302t-44b11c11785feeabb10bcd1bf5ab0dcee3d008dcab99ff84cb0f4abfaa819473</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/proc/2016-144-05/S0002-9939-2016-12800-1/S0002-9939-2016-12800-1.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/proc/2016-144-05/S0002-9939-2016-12800-1/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,780,784,803,832,23323,23327,27923,27924,58016,58020,58249,58253,77607,77609,77617,77619</link.rule.ids></links><search><creatorcontrib>Ciucu, Mihai</creatorcontrib><title>Four factorization formulas for plane partitions</title><title>Proceedings of the American Mathematical Society</title><description>All ten symmetry classes of plane partitions that fit in a given box are known to be enumerated by simple product formulas, but there is still no unified proof for all of them. Progress towards this goal can be made by establishing identities connecting the various symmetry classes. We present in this paper four such identities, involving all ten symmetry classes. We discuss their proofs and generalizations. The main result of this paper is to give a generalization of one of them, in the style of the identity presented in ``A factorization theorem for rhombus tilings,'' M. Ciucu and C. Krattenthaler, arXiv:1403.3323.</description><subject>A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9j8FOwzAMhiMEEmVw4Ql64YJUZrfplhzRxAbSJC67R06aiE7tUiXdAZ6ehiKOnGzL32_5Y-we4QlBwnII3iyxFAAXLEMQoliJcnXJMgAoCykrec1uYjxOI0q-zhhs_TnkjszoQ_tFY-tPufOhP3cUU5MPHZ1sPlAY27SMt-zKURft3W9dsMP25bB5Lfbvu7fN876gCsqx4FwjGsS1qJ21pDWCNg1qV5OGxlhbNQCiMaSldE5wo8Fx0o5IpMeqBXucz5rgYwzWqSG0PYVPhaCSqkqq6kd1gmGGj3HS-CMTQb0NPY0f0ZtWIeeqVig4TpGHOUJ9_O_0NyIdZp8</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Ciucu, Mihai</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160501</creationdate><title>Four factorization formulas for plane partitions</title><author>Ciucu, Mihai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a302t-44b11c11785feeabb10bcd1bf5ab0dcee3d008dcab99ff84cb0f4abfaa819473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ciucu, Mihai</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ciucu, Mihai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Four factorization formulas for plane partitions</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2016-05-01</date><risdate>2016</risdate><volume>144</volume><issue>5</issue><spage>1841</spage><epage>1856</epage><pages>1841-1856</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>All ten symmetry classes of plane partitions that fit in a given box are known to be enumerated by simple product formulas, but there is still no unified proof for all of them. Progress towards this goal can be made by establishing identities connecting the various symmetry classes. We present in this paper four such identities, involving all ten symmetry classes. We discuss their proofs and generalizations. The main result of this paper is to give a generalization of one of them, in the style of the identity presented in ``A factorization theorem for rhombus tilings,'' M. Ciucu and C. Krattenthaler, arXiv:1403.3323.</abstract><pub>American Mathematical Society</pub><doi>10.1090/proc/12800</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2016-05, Vol.144 (5), p.1841-1856
issn 0002-9939
1088-6826
language eng
recordid cdi_crossref_primary_10_1090_proc_12800
source American Mathematical Society Publications - Open Access; American Mathematical Society Journals; JSTOR; EZB Electronic Journals Library; JSTOR Mathematics & Statistics Collection
subjects A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS
title Four factorization formulas for plane partitions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Four%20factorization%20formulas%20for%20plane%20partitions&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Ciucu,%20Mihai&rft.date=2016-05-01&rft.volume=144&rft.issue=5&rft.spage=1841&rft.epage=1856&rft.pages=1841-1856&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/12800&rft_dat=%3Cjstor_cross%3Eprocamermathsoci.144.5.1841%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=procamermathsoci.144.5.1841&rfr_iscdi=true