Concrete solution to the nonsingular quartic binary moment problem

\beta _{00} ]]>> for \beta , supported in \mathbb{R}^2 \beta _{ij}=\int s^{i}t^{j}\,d\mu \;\;(0\leq i+j\leq 4) \mathcal {M}(2) 6 \times 6 \beta ^{(4)} \mathcal {M}(2)_{\mathbf {i},\,\mathbf {j}}:=\beta _{\mathbf {i}+\mathbf {j}} \mathbf {i},\mathbf {j} \in \mathbb{Z}^2_+ \left \vert\mathbf {i}...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2016-01, Vol.144 (1), p.249-258
Hauptverfasser: Curto, Raúl E., Yoo, Seonguk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 258
container_issue 1
container_start_page 249
container_title Proceedings of the American Mathematical Society
container_volume 144
creator Curto, Raúl E.
Yoo, Seonguk
description \beta _{00} ]]>> for \beta , supported in \mathbb{R}^2 \beta _{ij}=\int s^{i}t^{j}\,d\mu \;\;(0\leq i+j\leq 4) \mathcal {M}(2) 6 \times 6 \beta ^{(4)} \mathcal {M}(2)_{\mathbf {i},\,\mathbf {j}}:=\beta _{\mathbf {i}+\mathbf {j}} \mathbf {i},\mathbf {j} \in \mathbb{Z}^2_+ \left \vert\mathbf {i}\right \vert,\left \vert\mathbf {j}\right \vert\le 2 \beta ^{(4)} \mathcal {M}(2)-atomic.]]>
doi_str_mv 10.1090/proc/12698
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_12698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>procamermathsoci.144.1.249</jstor_id><sourcerecordid>procamermathsoci.144.1.249</sourcerecordid><originalsourceid>FETCH-LOGICAL-a337t-df80c111591d874e1149758ee99927f6333b9c7feb10ce0842a3a80e1f061e473</originalsourceid><addsrcrecordid>eNp9j7FOwzAQhi0EEqWw8AReWJBCfbEb2yNUFJAqscBsOe6FportYrsDb09KESPT6aTv_-8-Qq6B3QHTbLZL0c2gbrQ6IRNgSlWNqptTMmGM1ZXWXJ-Ti5y34wpayAl5WMTgEhakOQ770sdAS6RlgzTEkPvwsR9sop97m0rvaNsHm76ojx5DoeOxdkB_Sc46O2S8-p1T8r58fFs8V6vXp5fF_aqynMtSrTvFHADMNayVFAggtJwrRK11LbuGc95qJztsgTlkStSWW8UQOtYACsmn5PbY61LMOWFndqn34z8GmDnYm4O9-bEf4dkR3uYS0x95IKzH5G3Z5Oh6A0IYMLXQY-LmmLA-_9f8DU4IazI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Concrete solution to the nonsingular quartic binary moment problem</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>American Mathematical Society Publications</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Curto, Raúl E. ; Yoo, Seonguk</creator><creatorcontrib>Curto, Raúl E. ; Yoo, Seonguk</creatorcontrib><description>\beta _{00} ]]&gt;&gt; for \beta , supported in \mathbb{R}^2 \beta _{ij}=\int s^{i}t^{j}\,d\mu \;\;(0\leq i+j\leq 4) \mathcal {M}(2) 6 \times 6 \beta ^{(4)} \mathcal {M}(2)_{\mathbf {i},\,\mathbf {j}}:=\beta _{\mathbf {i}+\mathbf {j}} \mathbf {i},\mathbf {j} \in \mathbb{Z}^2_+ \left \vert\mathbf {i}\right \vert,\left \vert\mathbf {j}\right \vert\le 2 \beta ^{(4)} \mathcal {M}(2)-atomic.]]&gt;</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/12698</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>B. ANALYSIS</subject><ispartof>Proceedings of the American Mathematical Society, 2016-01, Vol.144 (1), p.249-258</ispartof><rights>Copyright 2015, American Mathematical Society</rights><rights>2016 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a337t-df80c111591d874e1149758ee99927f6333b9c7feb10ce0842a3a80e1f061e473</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/proc/2016-144-01/S0002-9939-2015-12698-6/S0002-9939-2015-12698-6.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/proc/2016-144-01/S0002-9939-2015-12698-6/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,780,784,803,832,23324,23328,27924,27925,58017,58021,58250,58254,77836,77838,77846,77848</link.rule.ids></links><search><creatorcontrib>Curto, Raúl E.</creatorcontrib><creatorcontrib>Yoo, Seonguk</creatorcontrib><title>Concrete solution to the nonsingular quartic binary moment problem</title><title>Proceedings of the American Mathematical Society</title><description>\beta _{00} ]]&gt;&gt; for \beta , supported in \mathbb{R}^2 \beta _{ij}=\int s^{i}t^{j}\,d\mu \;\;(0\leq i+j\leq 4) \mathcal {M}(2) 6 \times 6 \beta ^{(4)} \mathcal {M}(2)_{\mathbf {i},\,\mathbf {j}}:=\beta _{\mathbf {i}+\mathbf {j}} \mathbf {i},\mathbf {j} \in \mathbb{Z}^2_+ \left \vert\mathbf {i}\right \vert,\left \vert\mathbf {j}\right \vert\le 2 \beta ^{(4)} \mathcal {M}(2)-atomic.]]&gt;</description><subject>B. ANALYSIS</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9j7FOwzAQhi0EEqWw8AReWJBCfbEb2yNUFJAqscBsOe6FportYrsDb09KESPT6aTv_-8-Qq6B3QHTbLZL0c2gbrQ6IRNgSlWNqptTMmGM1ZXWXJ-Ti5y34wpayAl5WMTgEhakOQ770sdAS6RlgzTEkPvwsR9sop97m0rvaNsHm76ojx5DoeOxdkB_Sc46O2S8-p1T8r58fFs8V6vXp5fF_aqynMtSrTvFHADMNayVFAggtJwrRK11LbuGc95qJztsgTlkStSWW8UQOtYACsmn5PbY61LMOWFndqn34z8GmDnYm4O9-bEf4dkR3uYS0x95IKzH5G3Z5Oh6A0IYMLXQY-LmmLA-_9f8DU4IazI</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Curto, Raúl E.</creator><creator>Yoo, Seonguk</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160101</creationdate><title>Concrete solution to the nonsingular quartic binary moment problem</title><author>Curto, Raúl E. ; Yoo, Seonguk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a337t-df80c111591d874e1149758ee99927f6333b9c7feb10ce0842a3a80e1f061e473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>B. ANALYSIS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Curto, Raúl E.</creatorcontrib><creatorcontrib>Yoo, Seonguk</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Curto, Raúl E.</au><au>Yoo, Seonguk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concrete solution to the nonsingular quartic binary moment problem</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>144</volume><issue>1</issue><spage>249</spage><epage>258</epage><pages>249-258</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>\beta _{00} ]]&gt;&gt; for \beta , supported in \mathbb{R}^2 \beta _{ij}=\int s^{i}t^{j}\,d\mu \;\;(0\leq i+j\leq 4) \mathcal {M}(2) 6 \times 6 \beta ^{(4)} \mathcal {M}(2)_{\mathbf {i},\,\mathbf {j}}:=\beta _{\mathbf {i}+\mathbf {j}} \mathbf {i},\mathbf {j} \in \mathbb{Z}^2_+ \left \vert\mathbf {i}\right \vert,\left \vert\mathbf {j}\right \vert\le 2 \beta ^{(4)} \mathcal {M}(2)-atomic.]]&gt;</abstract><pub>American Mathematical Society</pub><doi>10.1090/proc/12698</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2016-01, Vol.144 (1), p.249-258
issn 0002-9939
1088-6826
language eng
recordid cdi_crossref_primary_10_1090_proc_12698
source American Mathematical Society Publications (Freely Accessible); JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; American Mathematical Society Publications; EZB-FREE-00999 freely available EZB journals
subjects B. ANALYSIS
title Concrete solution to the nonsingular quartic binary moment problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concrete%20solution%20to%20the%20nonsingular%20quartic%20binary%20moment%20problem&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Curto,%20Ra%C3%BAl%20E.&rft.date=2016-01-01&rft.volume=144&rft.issue=1&rft.spage=249&rft.epage=258&rft.pages=249-258&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/12698&rft_dat=%3Cjstor_cross%3Eprocamermathsoci.144.1.249%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=procamermathsoci.144.1.249&rfr_iscdi=true