Twisted analytic torsion and adiabatic limits

We study an analogue of the analytic torsion for elliptic complexes that are graded by Z2\mathbb {Z}_2, orignally constructed by Mathai and Wu. A particular example of a Z2\mathbb {Z}_2-graded complex was given by Rohm and Witten in 1986 when they studied the complex of forms on an odd-dimensional m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2015-12, Vol.143 (12), p.5455-5469
1. Verfasser: Mickler, Ryan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5469
container_issue 12
container_start_page 5455
container_title Proceedings of the American Mathematical Society
container_volume 143
creator Mickler, Ryan
description We study an analogue of the analytic torsion for elliptic complexes that are graded by Z2\mathbb {Z}_2, orignally constructed by Mathai and Wu. A particular example of a Z2\mathbb {Z}_2-graded complex was given by Rohm and Witten in 1986 when they studied the complex of forms on an odd-dimensional manifold equipped with a twisted differential dH=d+Hd_H = d+H, where HH is a closed odd-dimensional form. We show that the Ray-Singer metric on the determinant line of this twisted operator is equal to the untwisted (i.e. H=0H=0) Ray-Singer metric when the determinant lines are identified using a canonical isomorphism. We also study another analytical invariant of the twisted differential, the derived Euler characteristic χ′(dH)\mathbf {\chi }’(d_H), as defined by Bismut and Zhang.
doi_str_mv 10.1090/proc/12673
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_12673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44841721</jstor_id><sourcerecordid>44841721</sourcerecordid><originalsourceid>FETCH-LOGICAL-a278t-e9c487ccde8f6dc5db87cca9d673fdc2e4ca94ad2a37f32b3257f7d834ed31963</originalsourceid><addsrcrecordid>eNp9T0lLAzEYDaLgWL14F3rxIsRma5ajFDcoeKnn8E0WSJnplGRA-u_NOOLR0-MtPN5D6JaSR0oMWR3z4FaUScXPUEOJ1lhqJs9RQwhh2BhuLtFVKftKqRGqQXj3lcoY_BIO0J3G5JbjkEsaDlWook_QwqR2qU9juUYXEboSbn5xgT5fnnebN7z9eH3fPG0xMKVHHIwTWjnng47Su7VvJwbG113ROxZEJQI8A64iZy1naxWV11wEz6mRfIEe5l6Xh1JyiPaYUw_5ZCmx01E7HbU_R2v4bg7vS93-lxRCC6oYrf797ENf_uv5BtOlXQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Twisted analytic torsion and adiabatic limits</title><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><source>American Mathematical Society Publications (Freely Accessible)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Mickler, Ryan</creator><creatorcontrib>Mickler, Ryan</creatorcontrib><description>We study an analogue of the analytic torsion for elliptic complexes that are graded by Z2\mathbb {Z}_2, orignally constructed by Mathai and Wu. A particular example of a Z2\mathbb {Z}_2-graded complex was given by Rohm and Witten in 1986 when they studied the complex of forms on an odd-dimensional manifold equipped with a twisted differential dH=d+Hd_H = d+H, where HH is a closed odd-dimensional form. We show that the Ray-Singer metric on the determinant line of this twisted operator is equal to the untwisted (i.e. H=0H=0) Ray-Singer metric when the determinant lines are identified using a canonical isomorphism. We also study another analytical invariant of the twisted differential, the derived Euler characteristic χ′(dH)\mathbf {\chi }’(d_H), as defined by Bismut and Zhang.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/12673</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Research article</subject><ispartof>Proceedings of the American Mathematical Society, 2015-12, Vol.143 (12), p.5455-5469</ispartof><rights>Copyright 2015 American Mathematical Society</rights><rights>2015 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/proc/2015-143-12/S0002-9939-2015-12673-1/S0002-9939-2015-12673-1.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/proc/2015-143-12/S0002-9939-2015-12673-1/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,776,780,799,828,23303,23307,27901,27902,57992,57996,58225,58229,77579,77581,77589,77591</link.rule.ids></links><search><creatorcontrib>Mickler, Ryan</creatorcontrib><title>Twisted analytic torsion and adiabatic limits</title><title>Proceedings of the American Mathematical Society</title><addtitle>Proc. Amer. Math. Soc</addtitle><description>We study an analogue of the analytic torsion for elliptic complexes that are graded by Z2\mathbb {Z}_2, orignally constructed by Mathai and Wu. A particular example of a Z2\mathbb {Z}_2-graded complex was given by Rohm and Witten in 1986 when they studied the complex of forms on an odd-dimensional manifold equipped with a twisted differential dH=d+Hd_H = d+H, where HH is a closed odd-dimensional form. We show that the Ray-Singer metric on the determinant line of this twisted operator is equal to the untwisted (i.e. H=0H=0) Ray-Singer metric when the determinant lines are identified using a canonical isomorphism. We also study another analytical invariant of the twisted differential, the derived Euler characteristic χ′(dH)\mathbf {\chi }’(d_H), as defined by Bismut and Zhang.</description><subject>Research article</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9T0lLAzEYDaLgWL14F3rxIsRma5ajFDcoeKnn8E0WSJnplGRA-u_NOOLR0-MtPN5D6JaSR0oMWR3z4FaUScXPUEOJ1lhqJs9RQwhh2BhuLtFVKftKqRGqQXj3lcoY_BIO0J3G5JbjkEsaDlWook_QwqR2qU9juUYXEboSbn5xgT5fnnebN7z9eH3fPG0xMKVHHIwTWjnng47Su7VvJwbG113ROxZEJQI8A64iZy1naxWV11wEz6mRfIEe5l6Xh1JyiPaYUw_5ZCmx01E7HbU_R2v4bg7vS93-lxRCC6oYrf797ENf_uv5BtOlXQw</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Mickler, Ryan</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151201</creationdate><title>Twisted analytic torsion and adiabatic limits</title><author>Mickler, Ryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a278t-e9c487ccde8f6dc5db87cca9d673fdc2e4ca94ad2a37f32b3257f7d834ed31963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mickler, Ryan</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mickler, Ryan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Twisted analytic torsion and adiabatic limits</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><stitle>Proc. Amer. Math. Soc</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>143</volume><issue>12</issue><spage>5455</spage><epage>5469</epage><pages>5455-5469</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>We study an analogue of the analytic torsion for elliptic complexes that are graded by Z2\mathbb {Z}_2, orignally constructed by Mathai and Wu. A particular example of a Z2\mathbb {Z}_2-graded complex was given by Rohm and Witten in 1986 when they studied the complex of forms on an odd-dimensional manifold equipped with a twisted differential dH=d+Hd_H = d+H, where HH is a closed odd-dimensional form. We show that the Ray-Singer metric on the determinant line of this twisted operator is equal to the untwisted (i.e. H=0H=0) Ray-Singer metric when the determinant lines are identified using a canonical isomorphism. We also study another analytical invariant of the twisted differential, the derived Euler characteristic χ′(dH)\mathbf {\chi }’(d_H), as defined by Bismut and Zhang.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/proc/12673</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2015-12, Vol.143 (12), p.5455-5469
issn 0002-9939
1088-6826
language eng
recordid cdi_crossref_primary_10_1090_proc_12673
source Jstor Complete Legacy; American Mathematical Society Publications; American Mathematical Society Publications (Freely Accessible); EZB-FREE-00999 freely available EZB journals; JSTOR Mathematics & Statistics
subjects Research article
title Twisted analytic torsion and adiabatic limits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A30%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Twisted%20analytic%20torsion%20and%20adiabatic%20limits&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Mickler,%20Ryan&rft.date=2015-12-01&rft.volume=143&rft.issue=12&rft.spage=5455&rft.epage=5469&rft.pages=5455-5469&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/12673&rft_dat=%3Cjstor_cross%3E44841721%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=44841721&rfr_iscdi=true