Uniform accuracy of implicit-explicit Runge-Kutta (IMEX-RK) schemes for hyperbolic systems with relaxation
Implicit-explicit Runge-Kutta (IMEX-RK) schemes are popular methods to treat multiscale equations that contain a stiff part and a non-stiff part, where the stiff part is characterized by a small parameter ε \varepsilon . In this work, we prove rigorously the uniform stability and uniform accuracy of...
Gespeichert in:
Veröffentlicht in: | Mathematics of computation 2025-01, Vol.94 (351), p.209-240 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Implicit-explicit Runge-Kutta (IMEX-RK) schemes are popular methods to treat multiscale equations that contain a stiff part and a non-stiff part, where the stiff part is characterized by a small parameter
ε
\varepsilon
. In this work, we prove rigorously the uniform stability and uniform accuracy of a class of IMEX-RK schemes for a linear hyperbolic system with stiff relaxation. The result we obtain is optimal in the sense that it holds regardless of the value of
ε
\varepsilon
and the order of accuracy is the same as the design order of the original scheme, i.e., there is no order reduction. |
---|---|
ISSN: | 0025-5718 1088-6842 |
DOI: | 10.1090/mcom/3967 |